Metamath Proof Explorer


Theorem measbasedom

Description: The base set of a measure is its domain. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion measbasedom MranmeasuresMmeasuresdomM

Proof

Step Hyp Ref Expression
1 isrnmeas MranmeasuresdomMransigAlgebraM:domM0+∞M=0x𝒫domMxωDisjyxyMx=*yxMy
2 1 simprd MranmeasuresM:domM0+∞M=0x𝒫domMxωDisjyxyMx=*yxMy
3 dmmeas MranmeasuresdomMransigAlgebra
4 ismeas domMransigAlgebraMmeasuresdomMM:domM0+∞M=0x𝒫domMxωDisjyxyMx=*yxMy
5 3 4 syl MranmeasuresMmeasuresdomMM:domM0+∞M=0x𝒫domMxωDisjyxyMx=*yxMy
6 2 5 mpbird MranmeasuresMmeasuresdomM
7 elfvunirn MmeasuresdomMMranmeasures
8 6 7 impbii MranmeasuresMmeasuresdomM