Metamath Proof Explorer


Theorem measval

Description: The value of the measures function applied on a sigma-algebra. (Contributed by Thierry Arnoux, 17-Oct-2016)

Ref Expression
Assertion measval SransigAlgebrameasuresS=m|m:S0+∞m=0x𝒫SxωDisjyxymx=*yxmy

Proof

Step Hyp Ref Expression
1 simp1 m:S0+∞m=0x𝒫SxωDisjyxymx=*yxmym:S0+∞
2 1 ss2abi m|m:S0+∞m=0x𝒫SxωDisjyxymx=*yxmym|m:S0+∞
3 ovex 0+∞V
4 mapex SransigAlgebra0+∞Vm|m:S0+∞V
5 3 4 mpan2 SransigAlgebram|m:S0+∞V
6 ssexg m|m:S0+∞m=0x𝒫SxωDisjyxymx=*yxmym|m:S0+∞m|m:S0+∞Vm|m:S0+∞m=0x𝒫SxωDisjyxymx=*yxmyV
7 2 5 6 sylancr SransigAlgebram|m:S0+∞m=0x𝒫SxωDisjyxymx=*yxmyV
8 feq2 s=Sm:s0+∞m:S0+∞
9 pweq s=S𝒫s=𝒫S
10 9 raleqdv s=Sx𝒫sxωDisjyxymx=*yxmyx𝒫SxωDisjyxymx=*yxmy
11 8 10 3anbi13d s=Sm:s0+∞m=0x𝒫sxωDisjyxymx=*yxmym:S0+∞m=0x𝒫SxωDisjyxymx=*yxmy
12 11 abbidv s=Sm|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmy=m|m:S0+∞m=0x𝒫SxωDisjyxymx=*yxmy
13 df-meas measures=sransigAlgebram|m:s0+∞m=0x𝒫sxωDisjyxymx=*yxmy
14 12 13 fvmptg SransigAlgebram|m:S0+∞m=0x𝒫SxωDisjyxymx=*yxmyVmeasuresS=m|m:S0+∞m=0x𝒫SxωDisjyxymx=*yxmy
15 7 14 mpdan SransigAlgebrameasuresS=m|m:S0+∞m=0x𝒫SxωDisjyxymx=*yxmy