Metamath Proof Explorer


Theorem measval

Description: The value of the measures function applied on a sigma-algebra. (Contributed by Thierry Arnoux, 17-Oct-2016)

Ref Expression
Assertion measval ( 𝑆 ran sigAlgebra → ( measures ‘ 𝑆 ) = { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) → 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) )
2 1 ss2abi { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } ⊆ { 𝑚𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) }
3 ovex ( 0 [,] +∞ ) ∈ V
4 mapex ( ( 𝑆 ran sigAlgebra ∧ ( 0 [,] +∞ ) ∈ V ) → { 𝑚𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) } ∈ V )
5 3 4 mpan2 ( 𝑆 ran sigAlgebra → { 𝑚𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) } ∈ V )
6 ssexg ( ( { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } ⊆ { 𝑚𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) } ∧ { 𝑚𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) } ∈ V ) → { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } ∈ V )
7 2 5 6 sylancr ( 𝑆 ran sigAlgebra → { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } ∈ V )
8 feq2 ( 𝑠 = 𝑆 → ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ↔ 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ) )
9 pweq ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 )
10 9 raleqdv ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) )
11 8 10 3anbi13d ( 𝑠 = 𝑆 → ( ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) ↔ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) ) )
12 11 abbidv ( 𝑠 = 𝑆 → { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } = { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } )
13 df-meas measures = ( 𝑠 ran sigAlgebra ↦ { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } )
14 12 13 fvmptg ( ( 𝑆 ran sigAlgebra ∧ { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } ∈ V ) → ( measures ‘ 𝑆 ) = { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } )
15 7 14 mpdan ( 𝑆 ran sigAlgebra → ( measures ‘ 𝑆 ) = { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦 ) → ( 𝑚 𝑥 ) = Σ* 𝑦𝑥 ( 𝑚𝑦 ) ) ) } )