Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) → 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
2 |
1
|
ss2abi |
⊢ { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ⊆ { 𝑚 ∣ 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) } |
3 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
4 |
|
mapex |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ( 0 [,] +∞ ) ∈ V ) → { 𝑚 ∣ 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) } ∈ V ) |
5 |
3 4
|
mpan2 |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → { 𝑚 ∣ 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) } ∈ V ) |
6 |
|
ssexg |
⊢ ( ( { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ⊆ { 𝑚 ∣ 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) } ∧ { 𝑚 ∣ 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) } ∈ V ) → { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ∈ V ) |
7 |
2 5 6
|
sylancr |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ∈ V ) |
8 |
|
feq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ↔ 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ) ) |
9 |
|
pweq |
⊢ ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 ) |
10 |
9
|
raleqdv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) ) |
11 |
8 10
|
3anbi13d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) ↔ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) ) ) |
12 |
11
|
abbidv |
⊢ ( 𝑠 = 𝑆 → { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } = { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ) |
13 |
|
df-meas |
⊢ measures = ( 𝑠 ∈ ∪ ran sigAlgebra ↦ { 𝑚 ∣ ( 𝑚 : 𝑠 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑠 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ) |
14 |
12 13
|
fvmptg |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ∈ V ) → ( measures ‘ 𝑆 ) = { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ) |
15 |
7 14
|
mpdan |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( measures ‘ 𝑆 ) = { 𝑚 ∣ ( 𝑚 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( 𝑚 ‘ ∅ ) = 0 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( ( 𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦 ) → ( 𝑚 ‘ ∪ 𝑥 ) = Σ* 𝑦 ∈ 𝑥 ( 𝑚 ‘ 𝑦 ) ) ) } ) |