Metamath Proof Explorer


Theorem mendvsca

Description: A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015)

Ref Expression
Hypotheses mendvscafval.a A=MEndoM
mendvscafval.v ·˙=M
mendvscafval.b B=BaseA
mendvscafval.s S=ScalarM
mendvscafval.k K=BaseS
mendvscafval.e E=BaseM
mendvsca.w ˙=A
Assertion mendvsca XKYBX˙Y=E×X·˙fY

Proof

Step Hyp Ref Expression
1 mendvscafval.a A=MEndoM
2 mendvscafval.v ·˙=M
3 mendvscafval.b B=BaseA
4 mendvscafval.s S=ScalarM
5 mendvscafval.k K=BaseS
6 mendvscafval.e E=BaseM
7 mendvsca.w ˙=A
8 sneq x=Xx=X
9 8 xpeq2d x=XE×x=E×X
10 id y=Yy=Y
11 9 10 oveqan12d x=Xy=YE×x·˙fy=E×X·˙fY
12 1 2 3 4 5 6 mendvscafval A=xK,yBE×x·˙fy
13 7 12 eqtri ˙=xK,yBE×x·˙fy
14 ovex E×X·˙fYV
15 11 13 14 ovmpoa XKYBX˙Y=E×X·˙fY