Metamath Proof Explorer


Theorem metdcn2

Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypotheses xmetdcn2.1 J = MetOpen D
metdcn2.2 K = topGen ran .
Assertion metdcn2 D Met X D J × t J Cn K

Proof

Step Hyp Ref Expression
1 xmetdcn2.1 J = MetOpen D
2 metdcn2.2 K = topGen ran .
3 metxmet D Met X D ∞Met X
4 eqid ordTop = ordTop
5 1 4 xmetdcn D ∞Met X D J × t J Cn ordTop
6 3 5 syl D Met X D J × t J Cn ordTop
7 letopon ordTop TopOn *
8 metf D Met X D : X × X
9 8 frnd D Met X ran D
10 ressxr *
11 10 a1i D Met X *
12 cnrest2 ordTop TopOn * ran D * D J × t J Cn ordTop D J × t J Cn ordTop 𝑡
13 7 9 11 12 mp3an2i D Met X D J × t J Cn ordTop D J × t J Cn ordTop 𝑡
14 6 13 mpbid D Met X D J × t J Cn ordTop 𝑡
15 eqid ordTop 𝑡 = ordTop 𝑡
16 15 xrtgioo topGen ran . = ordTop 𝑡
17 2 16 eqtri K = ordTop 𝑡
18 17 oveq2i J × t J Cn K = J × t J Cn ordTop 𝑡
19 14 18 eleqtrrdi D Met X D J × t J Cn K