Metamath Proof Explorer


Theorem mgcf1olem2

Description: Property of a Galois connection, lemma for mgcf1o . (Contributed by Thierry Arnoux, 26-Jul-2024)

Ref Expression
Hypotheses mgcf1o.h No typesetting found for |- H = ( V MGalConn W ) with typecode |-
mgcf1o.a A=BaseV
mgcf1o.b B=BaseW
mgcf1o.1 ˙=V
mgcf1o.2 No typesetting found for |- .c_ = ( le ` W ) with typecode |-
mgcf1o.v φVPoset
mgcf1o.w φWPoset
mgcf1o.f φFHG
mgcf1olem2.1 φYB
Assertion mgcf1olem2 φGFGY=GY

Proof

Step Hyp Ref Expression
1 mgcf1o.h Could not format H = ( V MGalConn W ) : No typesetting found for |- H = ( V MGalConn W ) with typecode |-
2 mgcf1o.a A=BaseV
3 mgcf1o.b B=BaseW
4 mgcf1o.1 ˙=V
5 mgcf1o.2 Could not format .c_ = ( le ` W ) : No typesetting found for |- .c_ = ( le ` W ) with typecode |-
6 mgcf1o.v φVPoset
7 mgcf1o.w φWPoset
8 mgcf1o.f φFHG
9 mgcf1olem2.1 φYB
10 posprs VPosetVProset
11 6 10 syl φVProset
12 posprs WPosetWProset
13 7 12 syl φWProset
14 2 3 4 5 1 11 13 dfmgc2 Could not format ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) ) : No typesetting found for |- ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) ) with typecode |-
15 8 14 mpbid Could not format ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ ( ( A. x e. A A. y e. A ( x .<_ y -> ( F ` x ) .c_ ( F ` y ) ) /\ A. u e. B A. v e. B ( u .c_ v -> ( G ` u ) .<_ ( G ` v ) ) ) /\ ( A. u e. B ( F ` ( G ` u ) ) .c_ u /\ A. x e. A x .<_ ( G ` ( F ` x ) ) ) ) ) ) with typecode |-
16 15 simplrd φG:BA
17 15 simplld φF:AB
18 16 9 ffvelcdmd φGYA
19 17 18 ffvelcdmd φFGYB
20 16 19 ffvelcdmd φGFGYA
21 2 3 4 5 1 11 13 8 9 mgccole2 Could not format ( ph -> ( F ` ( G ` Y ) ) .c_ Y ) : No typesetting found for |- ( ph -> ( F ` ( G ` Y ) ) .c_ Y ) with typecode |-
22 2 3 4 5 1 11 13 8 19 9 21 mgcmnt2 φGFGY˙GY
23 2 3 4 5 1 11 13 8 18 mgccole1 φGY˙GFGY
24 2 4 posasymb VPosetGFGYAGYAGFGY˙GYGY˙GFGYGFGY=GY
25 24 biimpa VPosetGFGYAGYAGFGY˙GYGY˙GFGYGFGY=GY
26 6 20 18 22 23 25 syl32anc φGFGY=GY