Metamath Proof Explorer


Theorem mgcmnt2

Description: The upper adjoint G of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024)

Ref Expression
Hypotheses mgcoval.1 A=BaseV
mgcoval.2 B=BaseW
mgcoval.3 ˙=V
mgcoval.4 No typesetting found for |- .c_ = ( le ` W ) with typecode |-
mgcval.1 No typesetting found for |- H = ( V MGalConn W ) with typecode |-
mgcval.2 φVProset
mgcval.3 φWProset
mgccole.1 φFHG
mgcmnt2.1 φXB
mgcmnt2.2 φYB
mgcmnt2.3 No typesetting found for |- ( ph -> X .c_ Y ) with typecode |-
Assertion mgcmnt2 φGX˙GY

Proof

Step Hyp Ref Expression
1 mgcoval.1 A=BaseV
2 mgcoval.2 B=BaseW
3 mgcoval.3 ˙=V
4 mgcoval.4 Could not format .c_ = ( le ` W ) : No typesetting found for |- .c_ = ( le ` W ) with typecode |-
5 mgcval.1 Could not format H = ( V MGalConn W ) : No typesetting found for |- H = ( V MGalConn W ) with typecode |-
6 mgcval.2 φVProset
7 mgcval.3 φWProset
8 mgccole.1 φFHG
9 mgcmnt2.1 φXB
10 mgcmnt2.2 φYB
11 mgcmnt2.3 Could not format ( ph -> X .c_ Y ) : No typesetting found for |- ( ph -> X .c_ Y ) with typecode |-
12 1 2 3 4 5 6 7 mgcval Could not format ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) ) : No typesetting found for |- ( ph -> ( F H G <-> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) ) with typecode |-
13 8 12 mpbid Could not format ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( ph -> ( ( F : A --> B /\ G : B --> A ) /\ A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) ) with typecode |-
14 13 simplld φF:AB
15 13 simplrd φG:BA
16 15 9 ffvelcdmd φGXA
17 14 16 ffvelcdmd φFGXB
18 1 2 3 4 5 6 7 8 9 mgccole2 Could not format ( ph -> ( F ` ( G ` X ) ) .c_ X ) : No typesetting found for |- ( ph -> ( F ` ( G ` X ) ) .c_ X ) with typecode |-
19 2 4 prstr Could not format ( ( W e. Proset /\ ( ( F ` ( G ` X ) ) e. B /\ X e. B /\ Y e. B ) /\ ( ( F ` ( G ` X ) ) .c_ X /\ X .c_ Y ) ) -> ( F ` ( G ` X ) ) .c_ Y ) : No typesetting found for |- ( ( W e. Proset /\ ( ( F ` ( G ` X ) ) e. B /\ X e. B /\ Y e. B ) /\ ( ( F ` ( G ` X ) ) .c_ X /\ X .c_ Y ) ) -> ( F ` ( G ` X ) ) .c_ Y ) with typecode |-
20 7 17 9 10 18 11 19 syl132anc Could not format ( ph -> ( F ` ( G ` X ) ) .c_ Y ) : No typesetting found for |- ( ph -> ( F ` ( G ` X ) ) .c_ Y ) with typecode |-
21 breq2 Could not format ( y = Y -> ( ( F ` ( G ` X ) ) .c_ y <-> ( F ` ( G ` X ) ) .c_ Y ) ) : No typesetting found for |- ( y = Y -> ( ( F ` ( G ` X ) ) .c_ y <-> ( F ` ( G ` X ) ) .c_ Y ) ) with typecode |-
22 fveq2 y=YGy=GY
23 22 breq2d y=YGX˙GyGX˙GY
24 21 23 bibi12d Could not format ( y = Y -> ( ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) <-> ( ( F ` ( G ` X ) ) .c_ Y <-> ( G ` X ) .<_ ( G ` Y ) ) ) ) : No typesetting found for |- ( y = Y -> ( ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) <-> ( ( F ` ( G ` X ) ) .c_ Y <-> ( G ` X ) .<_ ( G ` Y ) ) ) ) with typecode |-
25 fveq2 x=GXFx=FGX
26 25 breq1d Could not format ( x = ( G ` X ) -> ( ( F ` x ) .c_ y <-> ( F ` ( G ` X ) ) .c_ y ) ) : No typesetting found for |- ( x = ( G ` X ) -> ( ( F ` x ) .c_ y <-> ( F ` ( G ` X ) ) .c_ y ) ) with typecode |-
27 breq1 x=GXx˙GyGX˙Gy
28 26 27 bibi12d Could not format ( x = ( G ` X ) -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( x = ( G ` X ) -> ( ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) ) with typecode |-
29 28 ralbidv Could not format ( x = ( G ` X ) -> ( A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> A. y e. B ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) ) : No typesetting found for |- ( x = ( G ` X ) -> ( A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) <-> A. y e. B ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) ) with typecode |-
30 13 simprd Could not format ( ph -> A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) : No typesetting found for |- ( ph -> A. x e. A A. y e. B ( ( F ` x ) .c_ y <-> x .<_ ( G ` y ) ) ) with typecode |-
31 29 30 16 rspcdva Could not format ( ph -> A. y e. B ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) : No typesetting found for |- ( ph -> A. y e. B ( ( F ` ( G ` X ) ) .c_ y <-> ( G ` X ) .<_ ( G ` y ) ) ) with typecode |-
32 24 31 10 rspcdva Could not format ( ph -> ( ( F ` ( G ` X ) ) .c_ Y <-> ( G ` X ) .<_ ( G ` Y ) ) ) : No typesetting found for |- ( ph -> ( ( F ` ( G ` X ) ) .c_ Y <-> ( G ` X ) .<_ ( G ` Y ) ) ) with typecode |-
33 20 32 mpbid φGX˙GY