Metamath Proof Explorer


Theorem mhmima

Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Assertion mhmima F M MndHom N X SubMnd M F X SubMnd N

Proof

Step Hyp Ref Expression
1 imassrn F X ran F
2 eqid Base M = Base M
3 eqid Base N = Base N
4 2 3 mhmf F M MndHom N F : Base M Base N
5 4 adantr F M MndHom N X SubMnd M F : Base M Base N
6 5 frnd F M MndHom N X SubMnd M ran F Base N
7 1 6 sstrid F M MndHom N X SubMnd M F X Base N
8 eqid 0 M = 0 M
9 eqid 0 N = 0 N
10 8 9 mhm0 F M MndHom N F 0 M = 0 N
11 10 adantr F M MndHom N X SubMnd M F 0 M = 0 N
12 5 ffnd F M MndHom N X SubMnd M F Fn Base M
13 2 submss X SubMnd M X Base M
14 13 adantl F M MndHom N X SubMnd M X Base M
15 8 subm0cl X SubMnd M 0 M X
16 15 adantl F M MndHom N X SubMnd M 0 M X
17 fnfvima F Fn Base M X Base M 0 M X F 0 M F X
18 12 14 16 17 syl3anc F M MndHom N X SubMnd M F 0 M F X
19 11 18 eqeltrrd F M MndHom N X SubMnd M 0 N F X
20 simpll F M MndHom N X SubMnd M z X x X F M MndHom N
21 14 adantr F M MndHom N X SubMnd M z X x X X Base M
22 simprl F M MndHom N X SubMnd M z X x X z X
23 21 22 sseldd F M MndHom N X SubMnd M z X x X z Base M
24 simprr F M MndHom N X SubMnd M z X x X x X
25 21 24 sseldd F M MndHom N X SubMnd M z X x X x Base M
26 eqid + M = + M
27 eqid + N = + N
28 2 26 27 mhmlin F M MndHom N z Base M x Base M F z + M x = F z + N F x
29 20 23 25 28 syl3anc F M MndHom N X SubMnd M z X x X F z + M x = F z + N F x
30 12 adantr F M MndHom N X SubMnd M z X x X F Fn Base M
31 26 submcl X SubMnd M z X x X z + M x X
32 31 3expb X SubMnd M z X x X z + M x X
33 32 adantll F M MndHom N X SubMnd M z X x X z + M x X
34 fnfvima F Fn Base M X Base M z + M x X F z + M x F X
35 30 21 33 34 syl3anc F M MndHom N X SubMnd M z X x X F z + M x F X
36 29 35 eqeltrrd F M MndHom N X SubMnd M z X x X F z + N F x F X
37 36 anassrs F M MndHom N X SubMnd M z X x X F z + N F x F X
38 37 ralrimiva F M MndHom N X SubMnd M z X x X F z + N F x F X
39 oveq2 y = F x F z + N y = F z + N F x
40 39 eleq1d y = F x F z + N y F X F z + N F x F X
41 40 ralima F Fn Base M X Base M y F X F z + N y F X x X F z + N F x F X
42 12 14 41 syl2anc F M MndHom N X SubMnd M y F X F z + N y F X x X F z + N F x F X
43 42 adantr F M MndHom N X SubMnd M z X y F X F z + N y F X x X F z + N F x F X
44 38 43 mpbird F M MndHom N X SubMnd M z X y F X F z + N y F X
45 44 ralrimiva F M MndHom N X SubMnd M z X y F X F z + N y F X
46 oveq1 x = F z x + N y = F z + N y
47 46 eleq1d x = F z x + N y F X F z + N y F X
48 47 ralbidv x = F z y F X x + N y F X y F X F z + N y F X
49 48 ralima F Fn Base M X Base M x F X y F X x + N y F X z X y F X F z + N y F X
50 12 14 49 syl2anc F M MndHom N X SubMnd M x F X y F X x + N y F X z X y F X F z + N y F X
51 45 50 mpbird F M MndHom N X SubMnd M x F X y F X x + N y F X
52 mhmrcl2 F M MndHom N N Mnd
53 52 adantr F M MndHom N X SubMnd M N Mnd
54 3 9 27 issubm N Mnd F X SubMnd N F X Base N 0 N F X x F X y F X x + N y F X
55 53 54 syl F M MndHom N X SubMnd M F X SubMnd N F X Base N 0 N F X x F X y F X x + N y F X
56 7 19 51 55 mpbir3and F M MndHom N X SubMnd M F X SubMnd N