Metamath Proof Explorer


Theorem mhpdeg

Description: All nonzero terms of a homogeneous polynomial have degree N . (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpdeg.h H=ImHomPR
mhpdeg.0 0˙=0R
mhpdeg.d D=h0I|h-1Fin
mhpdeg.i φIV
mhpdeg.r φRW
mhpdeg.n φN0
mhpdeg.x φXHN
Assertion mhpdeg φXsupp0˙gD|fld𝑠0g=N

Proof

Step Hyp Ref Expression
1 mhpdeg.h H=ImHomPR
2 mhpdeg.0 0˙=0R
3 mhpdeg.d D=h0I|h-1Fin
4 mhpdeg.i φIV
5 mhpdeg.r φRW
6 mhpdeg.n φN0
7 mhpdeg.x φXHN
8 eqid ImPolyR=ImPolyR
9 eqid BaseImPolyR=BaseImPolyR
10 1 8 9 2 3 4 5 6 ismhp φXHNXBaseImPolyRXsupp0˙gD|fld𝑠0g=N
11 10 simplbda φXHNXsupp0˙gD|fld𝑠0g=N
12 7 11 mpdan φXsupp0˙gD|fld𝑠0g=N