Metamath Proof Explorer


Theorem mhpdeg

Description: All nonzero terms of a homogeneous polynomial have degree N . (Contributed by Steven Nguyen, 25-Aug-2023)

Ref Expression
Hypotheses mhpdeg.h H = I mHomP R
mhpdeg.0 0 ˙ = 0 R
mhpdeg.d D = h 0 I | h -1 Fin
mhpdeg.x φ X H N
Assertion mhpdeg φ X supp 0 ˙ g D | fld 𝑠 0 g = N

Proof

Step Hyp Ref Expression
1 mhpdeg.h H = I mHomP R
2 mhpdeg.0 0 ˙ = 0 R
3 mhpdeg.d D = h 0 I | h -1 Fin
4 mhpdeg.x φ X H N
5 eqid I mPoly R = I mPoly R
6 eqid Base I mPoly R = Base I mPoly R
7 reldmmhp Rel dom mHomP
8 7 1 4 elfvov1 φ I V
9 7 1 4 elfvov2 φ R V
10 1 4 mhprcl φ N 0
11 1 5 6 2 3 8 9 10 ismhp φ X H N X Base I mPoly R X supp 0 ˙ g D | fld 𝑠 0 g = N
12 11 simplbda φ X H N X supp 0 ˙ g D | fld 𝑠 0 g = N
13 4 12 mpdan φ X supp 0 ˙ g D | fld 𝑠 0 g = N