Metamath Proof Explorer


Theorem minmar1marrep

Description: The minor matrix is a special case of a matrix with a replaced row. (Contributed by AV, 12-Feb-2019) (Revised by AV, 4-Jul-2022)

Ref Expression
Hypotheses minmar1marrep.a A=NMatR
minmar1marrep.b B=BaseA
minmar1marrep.o 1˙=1R
Assertion minmar1marrep RRingMBNminMatR1RM=MNmatRRepR1˙

Proof

Step Hyp Ref Expression
1 minmar1marrep.a A=NMatR
2 minmar1marrep.b B=BaseA
3 minmar1marrep.o 1˙=1R
4 eqid NminMatR1R=NminMatR1R
5 eqid 0R=0R
6 1 2 4 3 5 minmar1val0 MBNminMatR1RM=kN,lNiN,jNifi=kifj=l1˙0RiMj
7 6 adantl RRingMBNminMatR1RM=kN,lNiN,jNifi=kifj=l1˙0RiMj
8 simpr RRingMBMB
9 eqid BaseR=BaseR
10 9 3 ringidcl RRing1˙BaseR
11 10 adantr RRingMB1˙BaseR
12 eqid NmatRRepR=NmatRRepR
13 1 2 12 5 marrepval0 MB1˙BaseRMNmatRRepR1˙=kN,lNiN,jNifi=kifj=l1˙0RiMj
14 8 11 13 syl2anc RRingMBMNmatRRepR1˙=kN,lNiN,jNifi=kifj=l1˙0RiMj
15 7 14 eqtr4d RRingMBNminMatR1RM=MNmatRRepR1˙