Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of Schwabhauser p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mirval.p | |
|
mirval.d | |
||
mirval.i | |
||
mirval.l | |
||
mirval.s | |
||
mirval.g | |
||
mirval.a | |
||
mirfv.m | |
||
mirmir.b | |
||
Assertion | mirreu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | |
|
2 | mirval.d | |
|
3 | mirval.i | |
|
4 | mirval.l | |
|
5 | mirval.s | |
|
6 | mirval.g | |
|
7 | mirval.a | |
|
8 | mirfv.m | |
|
9 | mirmir.b | |
|
10 | 1 2 3 4 5 6 7 8 9 | mircl | |
11 | 1 2 3 4 5 6 7 8 9 | mirmir | |
12 | 6 | ad2antrr | |
13 | 7 | ad2antrr | |
14 | simplr | |
|
15 | 1 2 3 4 5 12 13 8 14 | mirmir | |
16 | simpr | |
|
17 | 16 | fveq2d | |
18 | 15 17 | eqtr3d | |
19 | 18 | ex | |
20 | 19 | ralrimiva | |
21 | fveqeq2 | |
|
22 | 21 | eqreu | |
23 | 10 11 20 22 | syl3anc | |