Metamath Proof Explorer


Theorem mirreu

Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of Schwabhauser p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019)

Ref Expression
Hypotheses mirval.p P=BaseG
mirval.d -˙=distG
mirval.i I=ItvG
mirval.l L=Line𝒢G
mirval.s S=pInv𝒢G
mirval.g φG𝒢Tarski
mirval.a φAP
mirfv.m M=SA
mirmir.b φBP
Assertion mirreu φ∃!aPMa=B

Proof

Step Hyp Ref Expression
1 mirval.p P=BaseG
2 mirval.d -˙=distG
3 mirval.i I=ItvG
4 mirval.l L=Line𝒢G
5 mirval.s S=pInv𝒢G
6 mirval.g φG𝒢Tarski
7 mirval.a φAP
8 mirfv.m M=SA
9 mirmir.b φBP
10 1 2 3 4 5 6 7 8 9 mircl φMBP
11 1 2 3 4 5 6 7 8 9 mirmir φMMB=B
12 6 ad2antrr φaPMa=BG𝒢Tarski
13 7 ad2antrr φaPMa=BAP
14 simplr φaPMa=BaP
15 1 2 3 4 5 12 13 8 14 mirmir φaPMa=BMMa=a
16 simpr φaPMa=BMa=B
17 16 fveq2d φaPMa=BMMa=MB
18 15 17 eqtr3d φaPMa=Ba=MB
19 18 ex φaPMa=Ba=MB
20 19 ralrimiva φaPMa=Ba=MB
21 fveqeq2 a=MBMa=BMMB=B
22 21 eqreu MBPMMB=BaPMa=Ba=MB∃!aPMa=B
23 10 11 20 22 syl3anc φ∃!aPMa=B