Metamath Proof Explorer


Theorem mncn0

Description: A monic polynomial is not zero. (Contributed by Stefan O'Rear, 5-Dec-2014)

Ref Expression
Assertion mncn0 PMonicSP0𝑝

Proof

Step Hyp Ref Expression
1 mnccoe PMonicScoeffPdegP=1
2 coe0 coeff0𝑝=0×0
3 2 fveq1i coeff0𝑝deg0𝑝=0×0deg0𝑝
4 dgr0 deg0𝑝=0
5 0nn0 00
6 4 5 eqeltri deg0𝑝0
7 c0ex 0V
8 7 fvconst2 deg0𝑝00×0deg0𝑝=0
9 6 8 ax-mp 0×0deg0𝑝=0
10 3 9 eqtri coeff0𝑝deg0𝑝=0
11 0ne1 01
12 10 11 eqnetri coeff0𝑝deg0𝑝1
13 fveq2 P=0𝑝coeffP=coeff0𝑝
14 fveq2 P=0𝑝degP=deg0𝑝
15 13 14 fveq12d P=0𝑝coeffPdegP=coeff0𝑝deg0𝑝
16 15 neeq1d P=0𝑝coeffPdegP1coeff0𝑝deg0𝑝1
17 12 16 mpbiri P=0𝑝coeffPdegP1
18 17 necon2i coeffPdegP=1P0𝑝
19 1 18 syl PMonicSP0𝑝