Metamath Proof Explorer


Theorem mncn0

Description: A monic polynomial is not zero. (Contributed by Stefan O'Rear, 5-Dec-2014)

Ref Expression
Assertion mncn0 P Monic S P 0 𝑝

Proof

Step Hyp Ref Expression
1 mnccoe P Monic S coeff P deg P = 1
2 coe0 coeff 0 𝑝 = 0 × 0
3 2 fveq1i coeff 0 𝑝 deg 0 𝑝 = 0 × 0 deg 0 𝑝
4 dgr0 deg 0 𝑝 = 0
5 0nn0 0 0
6 4 5 eqeltri deg 0 𝑝 0
7 c0ex 0 V
8 7 fvconst2 deg 0 𝑝 0 0 × 0 deg 0 𝑝 = 0
9 6 8 ax-mp 0 × 0 deg 0 𝑝 = 0
10 3 9 eqtri coeff 0 𝑝 deg 0 𝑝 = 0
11 0ne1 0 1
12 10 11 eqnetri coeff 0 𝑝 deg 0 𝑝 1
13 fveq2 P = 0 𝑝 coeff P = coeff 0 𝑝
14 fveq2 P = 0 𝑝 deg P = deg 0 𝑝
15 13 14 fveq12d P = 0 𝑝 coeff P deg P = coeff 0 𝑝 deg 0 𝑝
16 15 neeq1d P = 0 𝑝 coeff P deg P 1 coeff 0 𝑝 deg 0 𝑝 1
17 12 16 mpbiri P = 0 𝑝 coeff P deg P 1
18 17 necon2i coeff P deg P = 1 P 0 𝑝
19 1 18 syl P Monic S P 0 𝑝