Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Stefan O'Rear
Additional material on polynomials [DEPRECATED]
mncn0
Next ⟩
Degree and minimal polynomial of algebraic numbers
Metamath Proof Explorer
Ascii
Unicode
Theorem
mncn0
Description:
A monic polynomial is not zero.
(Contributed by
Stefan O'Rear
, 5-Dec-2014)
Ref
Expression
Assertion
mncn0
⊢
P
∈
Monic
⁡
S
→
P
≠
0
𝑝
Proof
Step
Hyp
Ref
Expression
1
mnccoe
⊢
P
∈
Monic
⁡
S
→
coeff
⁡
P
⁡
deg
⁡
P
=
1
2
coe0
⊢
coeff
⁡
0
𝑝
=
ℕ
0
×
0
3
2
fveq1i
⊢
coeff
⁡
0
𝑝
⁡
deg
⁡
0
𝑝
=
ℕ
0
×
0
⁡
deg
⁡
0
𝑝
4
dgr0
⊢
deg
⁡
0
𝑝
=
0
5
0nn0
⊢
0
∈
ℕ
0
6
4
5
eqeltri
⊢
deg
⁡
0
𝑝
∈
ℕ
0
7
c0ex
⊢
0
∈
V
8
7
fvconst2
⊢
deg
⁡
0
𝑝
∈
ℕ
0
→
ℕ
0
×
0
⁡
deg
⁡
0
𝑝
=
0
9
6
8
ax-mp
⊢
ℕ
0
×
0
⁡
deg
⁡
0
𝑝
=
0
10
3
9
eqtri
⊢
coeff
⁡
0
𝑝
⁡
deg
⁡
0
𝑝
=
0
11
0ne1
⊢
0
≠
1
12
10
11
eqnetri
⊢
coeff
⁡
0
𝑝
⁡
deg
⁡
0
𝑝
≠
1
13
fveq2
⊢
P
=
0
𝑝
→
coeff
⁡
P
=
coeff
⁡
0
𝑝
14
fveq2
⊢
P
=
0
𝑝
→
deg
⁡
P
=
deg
⁡
0
𝑝
15
13
14
fveq12d
⊢
P
=
0
𝑝
→
coeff
⁡
P
⁡
deg
⁡
P
=
coeff
⁡
0
𝑝
⁡
deg
⁡
0
𝑝
16
15
neeq1d
⊢
P
=
0
𝑝
→
coeff
⁡
P
⁡
deg
⁡
P
≠
1
↔
coeff
⁡
0
𝑝
⁡
deg
⁡
0
𝑝
≠
1
17
12
16
mpbiri
⊢
P
=
0
𝑝
→
coeff
⁡
P
⁡
deg
⁡
P
≠
1
18
17
necon2i
⊢
coeff
⁡
P
⁡
deg
⁡
P
=
1
→
P
≠
0
𝑝
19
1
18
syl
⊢
P
∈
Monic
⁡
S
→
P
≠
0
𝑝