Metamath Proof Explorer


Theorem mnd1

Description: The (smallest) structure representing atrivial monoid consists of one element. (Contributed by AV, 28-Apr-2019) (Proof shortened by AV, 11-Feb-2020)

Ref Expression
Hypothesis mnd1.m M=BasendxI+ndxIII
Assertion mnd1 IVMMnd

Proof

Step Hyp Ref Expression
1 mnd1.m M=BasendxI+ndxIII
2 1 sgrp1 Could not format ( I e. V -> M e. Smgrp ) : No typesetting found for |- ( I e. V -> M e. Smgrp ) with typecode |-
3 df-ov IIIII=IIIII
4 opex IIV
5 fvsng IIVIVIIIII=I
6 4 5 mpan IVIIIII=I
7 3 6 eqtrid IVIIIII=I
8 oveq2 y=IIIIIy=IIIII
9 id y=Iy=I
10 8 9 eqeq12d y=IIIIIy=yIIIII=I
11 oveq1 y=IyIIII=IIIII
12 11 9 eqeq12d y=IyIIII=yIIIII=I
13 10 12 anbi12d y=IIIIIy=yyIIII=yIIIII=IIIIII=I
14 13 ralsng IVyIIIIIy=yyIIII=yIIIII=IIIIII=I
15 7 7 14 mpbir2and IVyIIIIIy=yyIIII=y
16 oveq1 x=IxIIIy=IIIIy
17 16 eqeq1d x=IxIIIy=yIIIIy=y
18 17 ovanraleqv x=IyIxIIIy=yyIIIx=yyIIIIIy=yyIIII=y
19 18 rexsng IVxIyIxIIIy=yyIIIx=yyIIIIIy=yyIIII=y
20 15 19 mpbird IVxIyIxIIIy=yyIIIx=y
21 snex IV
22 1 grpbase IVI=BaseM
23 21 22 ax-mp I=BaseM
24 snex IIIV
25 1 grpplusg IIIVIII=+M
26 24 25 ax-mp III=+M
27 23 26 ismnddef Could not format ( M e. Mnd <-> ( M e. Smgrp /\ E. x e. { I } A. y e. { I } ( ( x { <. <. I , I >. , I >. } y ) = y /\ ( y { <. <. I , I >. , I >. } x ) = y ) ) ) : No typesetting found for |- ( M e. Mnd <-> ( M e. Smgrp /\ E. x e. { I } A. y e. { I } ( ( x { <. <. I , I >. , I >. } y ) = y /\ ( y { <. <. I , I >. , I >. } x ) = y ) ) ) with typecode |-
28 2 20 27 sylanbrc IVMMnd