Metamath Proof Explorer


Theorem mndpsuppfi

Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019)

Ref Expression
Hypothesis mndpsuppfi.r R=BaseM
Assertion mndpsuppfi MMndVXARVBRVAsupp0MFinBsupp0MFinA+MfBsupp0MFin

Proof

Step Hyp Ref Expression
1 mndpsuppfi.r R=BaseM
2 unfi Asupp0MFinBsupp0MFinsupp0MAsupp0MBFin
3 2 3ad2ant3 MMndVXARVBRVAsupp0MFinBsupp0MFinsupp0MAsupp0MBFin
4 1 mndpsuppss MMndVXARVBRVA+MfBsupp0Msupp0MAsupp0MB
5 4 3adant3 MMndVXARVBRVAsupp0MFinBsupp0MFinA+MfBsupp0Msupp0MAsupp0MB
6 ssfi supp0MAsupp0MBFinA+MfBsupp0Msupp0MAsupp0MBA+MfBsupp0MFin
7 3 5 6 syl2anc MMndVXARVBRVAsupp0MFinBsupp0MFinA+MfBsupp0MFin