Metamath Proof Explorer


Theorem mndpsuppfi

Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019)

Ref Expression
Hypothesis mndpsuppfi.r R = Base M
Assertion mndpsuppfi M Mnd V X A R V B R V A supp 0 M Fin B supp 0 M Fin A + M f B supp 0 M Fin

Proof

Step Hyp Ref Expression
1 mndpsuppfi.r R = Base M
2 unfi A supp 0 M Fin B supp 0 M Fin supp 0 M A supp 0 M B Fin
3 2 3ad2ant3 M Mnd V X A R V B R V A supp 0 M Fin B supp 0 M Fin supp 0 M A supp 0 M B Fin
4 1 mndpsuppss M Mnd V X A R V B R V A + M f B supp 0 M supp 0 M A supp 0 M B
5 4 3adant3 M Mnd V X A R V B R V A supp 0 M Fin B supp 0 M Fin A + M f B supp 0 M supp 0 M A supp 0 M B
6 ssfi supp 0 M A supp 0 M B Fin A + M f B supp 0 M supp 0 M A supp 0 M B A + M f B supp 0 M Fin
7 3 5 6 syl2anc M Mnd V X A R V B R V A supp 0 M Fin B supp 0 M Fin A + M f B supp 0 M Fin