Metamath Proof Explorer


Theorem mndpfsupp

Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019)

Ref Expression
Hypothesis mndpsuppfi.r R = Base M
Assertion mndpfsupp M Mnd V X A R V B R V finSupp 0 M A finSupp 0 M B finSupp 0 M A + M f B

Proof

Step Hyp Ref Expression
1 mndpsuppfi.r R = Base M
2 elmapfn A R V A Fn V
3 2 adantr A R V B R V A Fn V
4 3 3ad2ant2 M Mnd V X A R V B R V finSupp 0 M A finSupp 0 M B A Fn V
5 elmapfn B R V B Fn V
6 5 adantl A R V B R V B Fn V
7 6 3ad2ant2 M Mnd V X A R V B R V finSupp 0 M A finSupp 0 M B B Fn V
8 simp1r M Mnd V X A R V B R V finSupp 0 M A finSupp 0 M B V X
9 4 7 8 8 offun M Mnd V X A R V B R V finSupp 0 M A finSupp 0 M B Fun A + M f B
10 id finSupp 0 M A finSupp 0 M A
11 10 fsuppimpd finSupp 0 M A A supp 0 M Fin
12 id finSupp 0 M B finSupp 0 M B
13 12 fsuppimpd finSupp 0 M B B supp 0 M Fin
14 11 13 anim12i finSupp 0 M A finSupp 0 M B A supp 0 M Fin B supp 0 M Fin
15 1 mndpsuppfi M Mnd V X A R V B R V A supp 0 M Fin B supp 0 M Fin A + M f B supp 0 M Fin
16 14 15 syl3an3 M Mnd V X A R V B R V finSupp 0 M A finSupp 0 M B A + M f B supp 0 M Fin
17 ovex A + M f B V
18 fvexd M Mnd V X A R V B R V finSupp 0 M A finSupp 0 M B 0 M V
19 isfsupp A + M f B V 0 M V finSupp 0 M A + M f B Fun A + M f B A + M f B supp 0 M Fin
20 17 18 19 sylancr M Mnd V X A R V B R V finSupp 0 M A finSupp 0 M B finSupp 0 M A + M f B Fun A + M f B A + M f B supp 0 M Fin
21 9 16 20 mpbir2and M Mnd V X A R V B R V finSupp 0 M A finSupp 0 M B finSupp 0 M A + M f B