Metamath Proof Explorer


Theorem mndpfsupp

Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019)

Ref Expression
Hypothesis mndpsuppfi.r R=BaseM
Assertion mndpfsupp MMndVXARVBRVfinSupp0MAfinSupp0MBfinSupp0MA+MfB

Proof

Step Hyp Ref Expression
1 mndpsuppfi.r R=BaseM
2 elmapfn ARVAFnV
3 2 adantr ARVBRVAFnV
4 3 3ad2ant2 MMndVXARVBRVfinSupp0MAfinSupp0MBAFnV
5 elmapfn BRVBFnV
6 5 adantl ARVBRVBFnV
7 6 3ad2ant2 MMndVXARVBRVfinSupp0MAfinSupp0MBBFnV
8 simp1r MMndVXARVBRVfinSupp0MAfinSupp0MBVX
9 4 7 8 8 offun MMndVXARVBRVfinSupp0MAfinSupp0MBFunA+MfB
10 id finSupp0MAfinSupp0MA
11 10 fsuppimpd finSupp0MAAsupp0MFin
12 id finSupp0MBfinSupp0MB
13 12 fsuppimpd finSupp0MBBsupp0MFin
14 11 13 anim12i finSupp0MAfinSupp0MBAsupp0MFinBsupp0MFin
15 1 mndpsuppfi MMndVXARVBRVAsupp0MFinBsupp0MFinA+MfBsupp0MFin
16 14 15 syl3an3 MMndVXARVBRVfinSupp0MAfinSupp0MBA+MfBsupp0MFin
17 ovex A+MfBV
18 fvexd MMndVXARVBRVfinSupp0MAfinSupp0MB0MV
19 isfsupp A+MfBV0MVfinSupp0MA+MfBFunA+MfBA+MfBsupp0MFin
20 17 18 19 sylancr MMndVXARVBRVfinSupp0MAfinSupp0MBfinSupp0MA+MfBFunA+MfBA+MfBsupp0MFin
21 9 16 20 mpbir2and MMndVXARVBRVfinSupp0MAfinSupp0MBfinSupp0MA+MfB