Metamath Proof Explorer


Theorem mndpsuppss

Description: The support of a mapping of a scalar multiplication with a function of scalars is a subset of the support of the function of scalars. (Contributed by AV, 5-Apr-2019)

Ref Expression
Hypothesis mndpsuppss.r R = Base M
Assertion mndpsuppss M Mnd V X A R V B R V A + M f B supp 0 M supp 0 M A supp 0 M B

Proof

Step Hyp Ref Expression
1 mndpsuppss.r R = Base M
2 ioran ¬ A x 0 M B x 0 M ¬ A x 0 M ¬ B x 0 M
3 nne ¬ A x 0 M A x = 0 M
4 nne ¬ B x 0 M B x = 0 M
5 3 4 anbi12i ¬ A x 0 M ¬ B x 0 M A x = 0 M B x = 0 M
6 2 5 bitri ¬ A x 0 M B x 0 M A x = 0 M B x = 0 M
7 elmapfn A R V A Fn V
8 7 ad2antrl M Mnd V X A R V B R V A Fn V
9 8 adantr M Mnd V X A R V B R V A x = 0 M B x = 0 M A Fn V
10 elmapfn B R V B Fn V
11 10 ad2antll M Mnd V X A R V B R V B Fn V
12 11 adantr M Mnd V X A R V B R V A x = 0 M B x = 0 M B Fn V
13 simplr M Mnd V X A R V B R V V X
14 13 adantr M Mnd V X A R V B R V A x = 0 M B x = 0 M V X
15 inidm V V = V
16 simplrl M Mnd V X A R V B R V A x = 0 M B x = 0 M x V A x = 0 M
17 simplrr M Mnd V X A R V B R V A x = 0 M B x = 0 M x V B x = 0 M
18 9 12 14 14 15 16 17 ofval M Mnd V X A R V B R V A x = 0 M B x = 0 M x V A + M f B x = 0 M + M 0 M
19 18 an32s M Mnd V X A R V B R V x V A x = 0 M B x = 0 M A + M f B x = 0 M + M 0 M
20 eqid Base M = Base M
21 eqid 0 M = 0 M
22 20 21 mndidcl M Mnd 0 M Base M
23 22 ancli M Mnd M Mnd 0 M Base M
24 23 ad4antr M Mnd V X A R V B R V x V A x = 0 M B x = 0 M M Mnd 0 M Base M
25 eqid + M = + M
26 20 25 21 mndlid M Mnd 0 M Base M 0 M + M 0 M = 0 M
27 24 26 syl M Mnd V X A R V B R V x V A x = 0 M B x = 0 M 0 M + M 0 M = 0 M
28 19 27 eqtrd M Mnd V X A R V B R V x V A x = 0 M B x = 0 M A + M f B x = 0 M
29 nne ¬ A + M f B x 0 M A + M f B x = 0 M
30 28 29 sylibr M Mnd V X A R V B R V x V A x = 0 M B x = 0 M ¬ A + M f B x 0 M
31 30 ex M Mnd V X A R V B R V x V A x = 0 M B x = 0 M ¬ A + M f B x 0 M
32 6 31 syl5bi M Mnd V X A R V B R V x V ¬ A x 0 M B x 0 M ¬ A + M f B x 0 M
33 32 con4d M Mnd V X A R V B R V x V A + M f B x 0 M A x 0 M B x 0 M
34 33 ss2rabdv M Mnd V X A R V B R V x V | A + M f B x 0 M x V | A x 0 M B x 0 M
35 8 11 13 13 offun M Mnd V X A R V B R V Fun A + M f B
36 ovexd M Mnd V X A R V B R V A + M f B V
37 fvexd M Mnd V X A R V B R V 0 M V
38 suppval1 Fun A + M f B A + M f B V 0 M V A + M f B supp 0 M = x dom A + M f B | A + M f B x 0 M
39 35 36 37 38 syl3anc M Mnd V X A R V B R V A + M f B supp 0 M = x dom A + M f B | A + M f B x 0 M
40 13 8 11 offvalfv M Mnd V X A R V B R V A + M f B = v V A v + M B v
41 40 dmeqd M Mnd V X A R V B R V dom A + M f B = dom v V A v + M B v
42 ovex A v + M B v V
43 eqid v V A v + M B v = v V A v + M B v
44 42 43 dmmpti dom v V A v + M B v = V
45 41 44 eqtrdi M Mnd V X A R V B R V dom A + M f B = V
46 45 rabeqdv M Mnd V X A R V B R V x dom A + M f B | A + M f B x 0 M = x V | A + M f B x 0 M
47 39 46 eqtrd M Mnd V X A R V B R V A + M f B supp 0 M = x V | A + M f B x 0 M
48 elmapfun A R V Fun A
49 id A R V A R V
50 fvexd A R V 0 M V
51 suppval1 Fun A A R V 0 M V A supp 0 M = x dom A | A x 0 M
52 48 49 50 51 syl3anc A R V A supp 0 M = x dom A | A x 0 M
53 elmapi A R V A : V R
54 fdm A : V R dom A = V
55 rabeq dom A = V x dom A | A x 0 M = x V | A x 0 M
56 53 54 55 3syl A R V x dom A | A x 0 M = x V | A x 0 M
57 52 56 eqtrd A R V A supp 0 M = x V | A x 0 M
58 57 ad2antrl M Mnd V X A R V B R V A supp 0 M = x V | A x 0 M
59 elmapfun B R V Fun B
60 59 ad2antll M Mnd V X A R V B R V Fun B
61 simprr M Mnd V X A R V B R V B R V
62 suppval1 Fun B B R V 0 M V B supp 0 M = x dom B | B x 0 M
63 60 61 37 62 syl3anc M Mnd V X A R V B R V B supp 0 M = x dom B | B x 0 M
64 elmapi B R V B : V R
65 64 fdmd B R V dom B = V
66 65 ad2antll M Mnd V X A R V B R V dom B = V
67 66 rabeqdv M Mnd V X A R V B R V x dom B | B x 0 M = x V | B x 0 M
68 63 67 eqtrd M Mnd V X A R V B R V B supp 0 M = x V | B x 0 M
69 58 68 uneq12d M Mnd V X A R V B R V supp 0 M A supp 0 M B = x V | A x 0 M x V | B x 0 M
70 unrab x V | A x 0 M x V | B x 0 M = x V | A x 0 M B x 0 M
71 69 70 eqtrdi M Mnd V X A R V B R V supp 0 M A supp 0 M B = x V | A x 0 M B x 0 M
72 34 47 71 3sstr4d M Mnd V X A R V B R V A + M f B supp 0 M supp 0 M A supp 0 M B