Metamath Proof Explorer


Theorem mndvcl

Description: Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses mndvcl.b B=BaseM
mndvcl.p +˙=+M
Assertion mndvcl MMndXBIYBIX+˙fYBI

Proof

Step Hyp Ref Expression
1 mndvcl.b B=BaseM
2 mndvcl.p +˙=+M
3 1 2 mndcl MMndxByBx+˙yB
4 3 3expb MMndxByBx+˙yB
5 4 3ad2antl1 MMndXBIYBIxByBx+˙yB
6 elmapi XBIX:IB
7 6 3ad2ant2 MMndXBIYBIX:IB
8 elmapi YBIY:IB
9 8 3ad2ant3 MMndXBIYBIY:IB
10 elmapex XBIBVIV
11 10 simprd XBIIV
12 11 3ad2ant2 MMndXBIYBIIV
13 inidm II=I
14 5 7 9 12 12 13 off MMndXBIYBIX+˙fY:IB
15 1 fvexi BV
16 elmapg BVIVX+˙fYBIX+˙fY:IB
17 15 12 16 sylancr MMndXBIYBIX+˙fYBIX+˙fY:IB
18 14 17 mpbird MMndXBIYBIX+˙fYBI