Metamath Proof Explorer


Theorem mnringmulrd

Description: The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)

Ref Expression
Hypotheses mnringmulrd.1 No typesetting found for |- F = ( R MndRing M ) with typecode |-
mnringmulrd.2 B=BaseF
mnringmulrd.3 ·˙=R
mnringmulrd.4 0˙=0R
mnringmulrd.5 A=BaseM
mnringmulrd.6 +˙=+M
mnringmulrd.7 φRU
mnringmulrd.8 φMW
Assertion mnringmulrd φxB,yBFaA,bAiAifi=a+˙bxa·˙yb0˙=F

Proof

Step Hyp Ref Expression
1 mnringmulrd.1 Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |-
2 mnringmulrd.2 B=BaseF
3 mnringmulrd.3 ·˙=R
4 mnringmulrd.4 0˙=0R
5 mnringmulrd.5 A=BaseM
6 mnringmulrd.6 +˙=+M
7 mnringmulrd.7 φRU
8 mnringmulrd.8 φMW
9 eqid RfreeLModA=RfreeLModA
10 1 2 5 9 7 8 mnringbaserd φB=BaseRfreeLModA
11 5 fvexi AV
12 11 11 mpoex aA,bAiAifi=a+˙bxa·˙yb0˙V
13 12 a1i φaA,bAiAifi=a+˙bxa·˙yb0˙V
14 1 ovexi FV
15 14 a1i φFV
16 ovex RfreeLModAV
17 16 a1i φRfreeLModAV
18 2 10 eqtr3id φBaseF=BaseRfreeLModA
19 1 5 9 7 8 mnringaddgd φ+RfreeLModA=+F
20 19 eqcomd φ+F=+RfreeLModA
21 13 15 17 18 20 gsumpropd φFaA,bAiAifi=a+˙bxa·˙yb0˙=RfreeLModAaA,bAiAifi=a+˙bxa·˙yb0˙
22 10 10 21 mpoeq123dv φxB,yBFaA,bAiAifi=a+˙bxa·˙yb0˙=xBaseRfreeLModA,yBaseRfreeLModARfreeLModAaA,bAiAifi=a+˙bxa·˙yb0˙
23 fvex BaseRfreeLModAV
24 23 23 mpoex xBaseRfreeLModA,yBaseRfreeLModARfreeLModAaA,bAiAifi=a+˙bxa·˙yb0˙V
25 mulridx 𝑟=Slotndx
26 25 setsid RfreeLModAVxBaseRfreeLModA,yBaseRfreeLModARfreeLModAaA,bAiAifi=a+˙bxa·˙yb0˙VxBaseRfreeLModA,yBaseRfreeLModARfreeLModAaA,bAiAifi=a+˙bxa·˙yb0˙=RfreeLModAsSetndxxBaseRfreeLModA,yBaseRfreeLModARfreeLModAaA,bAiAifi=a+˙bxa·˙yb0˙
27 16 24 26 mp2an xBaseRfreeLModA,yBaseRfreeLModARfreeLModAaA,bAiAifi=a+˙bxa·˙yb0˙=RfreeLModAsSetndxxBaseRfreeLModA,yBaseRfreeLModARfreeLModAaA,bAiAifi=a+˙bxa·˙yb0˙
28 eqid BaseRfreeLModA=BaseRfreeLModA
29 1 3 4 5 6 9 28 7 8 mnringvald φF=RfreeLModAsSetndxxBaseRfreeLModA,yBaseRfreeLModARfreeLModAaA,bAiAifi=a+˙bxa·˙yb0˙
30 29 fveq2d φF=RfreeLModAsSetndxxBaseRfreeLModA,yBaseRfreeLModARfreeLModAaA,bAiAifi=a+˙bxa·˙yb0˙
31 27 30 eqtr4id φxBaseRfreeLModA,yBaseRfreeLModARfreeLModAaA,bAiAifi=a+˙bxa·˙yb0˙=F
32 22 31 eqtrd φxB,yBFaA,bAiAifi=a+˙bxa·˙yb0˙=F