Description: The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mnringmulrd.1 | No typesetting found for |- F = ( R MndRing M ) with typecode |- | |
mnringmulrd.2 | |
||
mnringmulrd.3 | |
||
mnringmulrd.4 | |
||
mnringmulrd.5 | |
||
mnringmulrd.6 | |
||
mnringmulrd.7 | |
||
mnringmulrd.8 | |
||
Assertion | mnringmulrd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringmulrd.1 | Could not format F = ( R MndRing M ) : No typesetting found for |- F = ( R MndRing M ) with typecode |- | |
2 | mnringmulrd.2 | |
|
3 | mnringmulrd.3 | |
|
4 | mnringmulrd.4 | |
|
5 | mnringmulrd.5 | |
|
6 | mnringmulrd.6 | |
|
7 | mnringmulrd.7 | |
|
8 | mnringmulrd.8 | |
|
9 | eqid | |
|
10 | 1 2 5 9 7 8 | mnringbaserd | |
11 | 5 | fvexi | |
12 | 11 11 | mpoex | |
13 | 12 | a1i | |
14 | 1 | ovexi | |
15 | 14 | a1i | |
16 | ovex | |
|
17 | 16 | a1i | |
18 | 2 10 | eqtr3id | |
19 | 1 5 9 7 8 | mnringaddgd | |
20 | 19 | eqcomd | |
21 | 13 15 17 18 20 | gsumpropd | |
22 | 10 10 21 | mpoeq123dv | |
23 | fvex | |
|
24 | 23 23 | mpoex | |
25 | mulridx | |
|
26 | 25 | setsid | |
27 | 16 24 26 | mp2an | |
28 | eqid | |
|
29 | 1 3 4 5 6 9 28 7 8 | mnringvald | |
30 | 29 | fveq2d | |
31 | 27 30 | eqtr4id | |
32 | 22 31 | eqtrd | |