Metamath Proof Explorer


Theorem mnuop123d

Description: Operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Hypotheses mnuop123d.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
mnuop123d.2 φUM
mnuop123d.3 φAU
Assertion mnuop123d φ𝒫AUfwU𝒫AwiAvUivvfufiuuw

Proof

Step Hyp Ref Expression
1 mnuop123d.1 M=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
2 mnuop123d.2 φUM
3 mnuop123d.3 φAU
4 pweq z=A𝒫z=𝒫A
5 4 sseq1d z=A𝒫zU𝒫AU
6 4 sseq1d z=A𝒫zw𝒫Aw
7 raleq z=AizvUivvfufiuuwiAvUivvfufiuuw
8 6 7 anbi12d z=A𝒫zwizvUivvfufiuuw𝒫AwiAvUivvfufiuuw
9 8 rexbidv z=AwU𝒫zwizvUivvfufiuuwwU𝒫AwiAvUivvfufiuuw
10 9 albidv z=AfwU𝒫zwizvUivvfufiuuwfwU𝒫AwiAvUivvfufiuuw
11 5 10 anbi12d z=A𝒫zUfwU𝒫zwizvUivvfufiuuw𝒫AUfwU𝒫AwiAvUivvfufiuuw
12 1 ismnu UMUMzU𝒫zUfwU𝒫zwizvUivvfufiuuw
13 12 ibi UMzU𝒫zUfwU𝒫zwizvUivvfufiuuw
14 2 13 syl φzU𝒫zUfwU𝒫zwizvUivvfufiuuw
15 11 14 3 rspcdva φ𝒫AUfwU𝒫AwiAvUivvfufiuuw