Metamath Proof Explorer


Theorem mo5f

Description: Alternate definition of "at most one." (Contributed by Thierry Arnoux, 1-Mar-2017)

Ref Expression
Hypotheses mo5f.1 iφ
mo5f.2 jφ
Assertion mo5f *xφijixφjxφi=j

Proof

Step Hyp Ref Expression
1 mo5f.1 iφ
2 mo5f.2 jφ
3 2 mo3 *xφxjφjxφx=j
4 1 nfsbv ijxφ
5 1 4 nfan iφjxφ
6 nfv ix=j
7 5 6 nfim iφjxφx=j
8 7 nfal ijφjxφx=j
9 8 sb8f xjφjxφx=jiixjφjxφx=j
10 sbim ixφjxφx=jixφjxφixx=j
11 sban ixφjxφixφixjxφ
12 nfs1v xjxφ
13 12 sbf ixjxφjxφ
14 13 bicomi jxφixjxφ
15 14 anbi2i ixφjxφixφixjxφ
16 11 15 bitr4i ixφjxφixφjxφ
17 equsb3 ixx=ji=j
18 16 17 imbi12i ixφjxφixx=jixφjxφi=j
19 10 18 bitri ixφjxφx=jixφjxφi=j
20 19 sbalv ixjφjxφx=jjixφjxφi=j
21 20 albii iixjφjxφx=jijixφjxφi=j
22 3 9 21 3bitri *xφijixφjxφi=j