Metamath Proof Explorer


Theorem mo5f

Description: Alternate definition of "at most one." (Contributed by Thierry Arnoux, 1-Mar-2017)

Ref Expression
Hypotheses mo5f.1 i φ
mo5f.2 j φ
Assertion mo5f * x φ i j i x φ j x φ i = j

Proof

Step Hyp Ref Expression
1 mo5f.1 i φ
2 mo5f.2 j φ
3 2 mo3 * x φ x j φ j x φ x = j
4 1 nfsbv i j x φ
5 1 4 nfan i φ j x φ
6 nfv i x = j
7 5 6 nfim i φ j x φ x = j
8 7 nfal i j φ j x φ x = j
9 8 sb8v x j φ j x φ x = j i i x j φ j x φ x = j
10 sbim i x φ j x φ x = j i x φ j x φ i x x = j
11 sban i x φ j x φ i x φ i x j x φ
12 nfs1v x j x φ
13 12 sbf i x j x φ j x φ
14 13 bicomi j x φ i x j x φ
15 14 anbi2i i x φ j x φ i x φ i x j x φ
16 11 15 bitr4i i x φ j x φ i x φ j x φ
17 equsb3 i x x = j i = j
18 16 17 imbi12i i x φ j x φ i x x = j i x φ j x φ i = j
19 10 18 bitri i x φ j x φ x = j i x φ j x φ i = j
20 19 sbalv i x j φ j x φ x = j j i x φ j x φ i = j
21 20 albii i i x j φ j x φ x = j i j i x φ j x φ i = j
22 3 9 21 3bitri * x φ i j i x φ j x φ i = j