Metamath Proof Explorer


Theorem modid2

Description: Identity law for modulo. (Contributed by NM, 29-Dec-2008)

Ref Expression
Assertion modid2 AB+AmodB=A0AA<B

Proof

Step Hyp Ref Expression
1 modge0 AB+0AmodB
2 modlt AB+AmodB<B
3 1 2 jca AB+0AmodBAmodB<B
4 breq2 AmodB=A0AmodB0A
5 breq1 AmodB=AAmodB<BA<B
6 4 5 anbi12d AmodB=A0AmodBAmodB<B0AA<B
7 3 6 syl5ibcom AB+AmodB=A0AA<B
8 modid AB+0AA<BAmodB=A
9 8 ex AB+0AA<BAmodB=A
10 7 9 impbid AB+AmodB=A0AA<B