Metamath Proof Explorer


Theorem zmodid2

Description: Identity law for modulo restricted to integers. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion zmodid2 MNMmodN=MM0N1

Proof

Step Hyp Ref Expression
1 zre MM
2 nnrp NN+
3 modid2 MN+MmodN=M0MM<N
4 1 2 3 syl2an MNMmodN=M0MM<N
5 nnz NN
6 0z 0
7 elfzm11 0NM0N1M0MM<N
8 6 7 mpan NM0N1M0MM<N
9 3anass M0MM<NM0MM<N
10 8 9 bitrdi NM0N1M0MM<N
11 5 10 syl NM0N1M0MM<N
12 ibar M0MM<NM0MM<N
13 12 bicomd MM0MM<N0MM<N
14 11 13 sylan9bbr MNM0N10MM<N
15 4 14 bitr4d MNMmodN=MM0N1