Metamath Proof Explorer


Theorem moexexlem

Description: Factor out the proof skeleton of moexex and moexexvw . (Contributed by Wolf Lammen, 2-Oct-2023)

Ref Expression
Hypotheses moexexlem.1 yφ
moexexlem.2 y*xφ
moexexlem.3 x*yxφψ
Assertion moexexlem *xφx*yψ*yxφψ

Proof

Step Hyp Ref Expression
1 moexexlem.1 yφ
2 moexexlem.2 y*xφ
3 moexexlem.3 x*yxφψ
4 nfmo1 x*xφ
5 nfa1 xx*yψ
6 5 3 nfim xx*yψ*yxφψ
7 mopick *xφxφψφψ
8 7 ex *xφxφψφψ
9 8 com23 *xφφxφψψ
10 2 1 9 alrimd *xφφyxφψψ
11 moim yxφψψ*yψ*yxφψ
12 11 spsd yxφψψx*yψ*yxφψ
13 10 12 syl6 *xφφx*yψ*yxφψ
14 4 6 13 exlimd *xφxφx*yψ*yxφψ
15 1 nfex yxφ
16 exsimpl xφψxφ
17 15 16 exlimi yxφψxφ
18 nexmo ¬yxφψ*yxφψ
19 17 18 nsyl5 ¬xφ*yxφψ
20 19 a1d ¬xφx*yψ*yxφψ
21 14 20 pm2.61d1 *xφx*yψ*yxφψ
22 21 imp *xφx*yψ*yxφψ