Metamath Proof Explorer


Theorem mofsn

Description: There is at most one function into a singleton, with fewer axioms than eufsn and eufsn2 . See also mofsn2 . (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mofsn BV*ff:AB

Proof

Step Hyp Ref Expression
1 fconst2g BVf:ABf=A×B
2 1 biimpd BVf:ABf=A×B
3 fconst2g BVg:ABg=A×B
4 3 biimpd BVg:ABg=A×B
5 eqtr3 f=A×Bg=A×Bf=g
6 5 a1i BVf=A×Bg=A×Bf=g
7 2 4 6 syl2and BVf:ABg:ABf=g
8 7 alrimivv BVfgf:ABg:ABf=g
9 feq1 f=gf:ABg:AB
10 9 mo4 *ff:ABfgf:ABg:ABf=g
11 8 10 sylibr BV*ff:AB