Metamath Proof Explorer


Theorem monoord2xr

Description: Ordering relation for a monotonic sequence, decreasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022)

Ref Expression
Hypotheses monoord2xr.p kφ
monoord2xr.k _kF
monoord2xr.n φNM
monoord2xr.x φkMNFk*
monoord2xr.l φkMN1Fk+1Fk
Assertion monoord2xr φFNFM

Proof

Step Hyp Ref Expression
1 monoord2xr.p kφ
2 monoord2xr.k _kF
3 monoord2xr.n φNM
4 monoord2xr.x φkMNFk*
5 monoord2xr.l φkMN1Fk+1Fk
6 nfv kjMN
7 1 6 nfan kφjMN
8 nfcv _kj
9 2 8 nffv _kFj
10 nfcv _k*
11 9 10 nfel kFj*
12 7 11 nfim kφjMNFj*
13 eleq1w k=jkMNjMN
14 13 anbi2d k=jφkMNφjMN
15 fveq2 k=jFk=Fj
16 15 eleq1d k=jFk*Fj*
17 14 16 imbi12d k=jφkMNFk*φjMNFj*
18 12 17 4 chvarfv φjMNFj*
19 nfv kjMN1
20 1 19 nfan kφjMN1
21 nfcv _kj+1
22 2 21 nffv _kFj+1
23 nfcv _k
24 22 23 9 nfbr kFj+1Fj
25 20 24 nfim kφjMN1Fj+1Fj
26 eleq1w k=jkMN1jMN1
27 26 anbi2d k=jφkMN1φjMN1
28 fvoveq1 k=jFk+1=Fj+1
29 28 15 breq12d k=jFk+1FkFj+1Fj
30 27 29 imbi12d k=jφkMN1Fk+1FkφjMN1Fj+1Fj
31 25 30 5 chvarfv φjMN1Fj+1Fj
32 3 18 31 monoord2xrv φFNFM