Metamath Proof Explorer


Theorem mply1topmatval

Description: A polynomial over matrices transformed into a polynomial matrix. I is the inverse function of the transformation T of polynomial matrices into polynomials over matrices: ( T( IO ) ) = O ) (see mp2pm2mp ). (Contributed by AV, 6-Oct-2019)

Ref Expression
Hypotheses mply1topmat.a A=NMatR
mply1topmat.q Q=Poly1A
mply1topmat.l L=BaseQ
mply1topmat.p P=Poly1R
mply1topmat.m ·˙=P
mply1topmat.e E=mulGrpP
mply1topmat.y Y=var1R
mply1topmat.i I=pLiN,jNPk0icoe1pkj·˙kEY
Assertion mply1topmatval NVOLIO=iN,jNPk0icoe1Okj·˙kEY

Proof

Step Hyp Ref Expression
1 mply1topmat.a A=NMatR
2 mply1topmat.q Q=Poly1A
3 mply1topmat.l L=BaseQ
4 mply1topmat.p P=Poly1R
5 mply1topmat.m ·˙=P
6 mply1topmat.e E=mulGrpP
7 mply1topmat.y Y=var1R
8 mply1topmat.i I=pLiN,jNPk0icoe1pkj·˙kEY
9 fveq2 p=Ocoe1p=coe1O
10 9 fveq1d p=Ocoe1pk=coe1Ok
11 10 oveqd p=Oicoe1pkj=icoe1Okj
12 11 oveq1d p=Oicoe1pkj·˙kEY=icoe1Okj·˙kEY
13 12 mpteq2dv p=Ok0icoe1pkj·˙kEY=k0icoe1Okj·˙kEY
14 13 oveq2d p=OPk0icoe1pkj·˙kEY=Pk0icoe1Okj·˙kEY
15 14 mpoeq3dv p=OiN,jNPk0icoe1pkj·˙kEY=iN,jNPk0icoe1Okj·˙kEY
16 simpr NVOLOL
17 simpl NVOLNV
18 mpoexga NVNViN,jNPk0icoe1Okj·˙kEYV
19 17 18 syldan NVOLiN,jNPk0icoe1Okj·˙kEYV
20 8 15 16 19 fvmptd3 NVOLIO=iN,jNPk0icoe1Okj·˙kEY