Metamath Proof Explorer


Theorem mrcss

Description: Closure preserves subset ordering. (Contributed by Stefan O'Rear, 31-Jan-2015)

Ref Expression
Hypothesis mrcfval.f F=mrClsC
Assertion mrcss CMooreXUVVXFUFV

Proof

Step Hyp Ref Expression
1 mrcfval.f F=mrClsC
2 sstr2 UVVsUs
3 2 adantr UVsCVsUs
4 3 ss2rabdv UVsC|VssC|Us
5 intss sC|VssC|UssC|UssC|Vs
6 4 5 syl UVsC|UssC|Vs
7 6 3ad2ant2 CMooreXUVVXsC|UssC|Vs
8 simp1 CMooreXUVVXCMooreX
9 sstr UVVXUX
10 9 3adant1 CMooreXUVVXUX
11 1 mrcval CMooreXUXFU=sC|Us
12 8 10 11 syl2anc CMooreXUVVXFU=sC|Us
13 1 mrcval CMooreXVXFV=sC|Vs
14 13 3adant2 CMooreXUVVXFV=sC|Vs
15 7 12 14 3sstr4d CMooreXUVVXFUFV