Metamath Proof Explorer


Theorem mrcval

Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015) (Proof shortened by Fan Zheng, 6-Jun-2016)

Ref Expression
Hypothesis mrcfval.f F=mrClsC
Assertion mrcval CMooreXUXFU=sC|Us

Proof

Step Hyp Ref Expression
1 mrcfval.f F=mrClsC
2 1 mrcfval CMooreXF=x𝒫XsC|xs
3 2 adantr CMooreXUXF=x𝒫XsC|xs
4 sseq1 x=UxsUs
5 4 rabbidv x=UsC|xs=sC|Us
6 5 inteqd x=UsC|xs=sC|Us
7 6 adantl CMooreXUXx=UsC|xs=sC|Us
8 mre1cl CMooreXXC
9 elpw2g XCU𝒫XUX
10 8 9 syl CMooreXU𝒫XUX
11 10 biimpar CMooreXUXU𝒫X
12 sseq2 s=XUsUX
13 8 adantr CMooreXUXXC
14 simpr CMooreXUXUX
15 12 13 14 elrabd CMooreXUXXsC|Us
16 15 ne0d CMooreXUXsC|Us
17 intex sC|UssC|UsV
18 16 17 sylib CMooreXUXsC|UsV
19 3 7 11 18 fvmptd CMooreXUXFU=sC|Us