Metamath Proof Explorer


Theorem mrefg3

Description: Slight variation on finite generation for closure systems. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Hypothesis isnacs.f F=mrClsC
Assertion mrefg3 CMooreXSCg𝒫XFinS=Fgg𝒫SFinSFg

Proof

Step Hyp Ref Expression
1 isnacs.f F=mrClsC
2 1 mrefg2 CMooreXg𝒫XFinS=Fgg𝒫SFinS=Fg
3 2 adantr CMooreXSCg𝒫XFinS=Fgg𝒫SFinS=Fg
4 eqss S=FgSFgFgS
5 simpll CMooreXSCg𝒫SFinCMooreX
6 inss1 𝒫SFin𝒫S
7 6 sseli g𝒫SFing𝒫S
8 7 elpwid g𝒫SFingS
9 8 adantl CMooreXSCg𝒫SFingS
10 simplr CMooreXSCg𝒫SFinSC
11 1 mrcsscl CMooreXgSSCFgS
12 5 9 10 11 syl3anc CMooreXSCg𝒫SFinFgS
13 12 biantrud CMooreXSCg𝒫SFinSFgSFgFgS
14 4 13 bitr4id CMooreXSCg𝒫SFinS=FgSFg
15 14 rexbidva CMooreXSCg𝒫SFinS=Fgg𝒫SFinSFg
16 3 15 bitrd CMooreXSCg𝒫XFinS=Fgg𝒫SFinSFg