Metamath Proof Explorer


Theorem mrsubff1o

Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mrsubvr.v V=mVRT
mrsubvr.r R=mRExT
mrsubvr.s S=mRSubstT
Assertion mrsubff1o TWSRV:RV1-1 ontoranS

Proof

Step Hyp Ref Expression
1 mrsubvr.v V=mVRT
2 mrsubvr.r R=mRExT
3 mrsubvr.s S=mRSubstT
4 1 2 3 mrsubff1 TWSRV:RV1-1RR
5 f1f1orn SRV:RV1-1RRSRV:RV1-1 ontoranSRV
6 4 5 syl TWSRV:RV1-1 ontoranSRV
7 1 2 3 mrsubrn ranS=SRV
8 df-ima SRV=ranSRV
9 7 8 eqtri ranS=ranSRV
10 f1oeq3 ranS=ranSRVSRV:RV1-1 ontoranSSRV:RV1-1 ontoranSRV
11 9 10 ax-mp SRV:RV1-1 ontoranSSRV:RV1-1 ontoranSRV
12 6 11 sylibr TWSRV:RV1-1 ontoranS