Description: When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mrsubvr.v | |
|
mrsubvr.r | |
||
mrsubvr.s | |
||
Assertion | mrsubff1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrsubvr.v | |
|
2 | mrsubvr.r | |
|
3 | mrsubvr.s | |
|
4 | 1 2 3 | mrsubff1 | |
5 | f1f1orn | |
|
6 | 4 5 | syl | |
7 | 1 2 3 | mrsubrn | |
8 | df-ima | |
|
9 | 7 8 | eqtri | |
10 | f1oeq3 | |
|
11 | 9 10 | ax-mp | |
12 | 6 11 | sylibr | |