Metamath Proof Explorer


Theorem msubfval

Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses msubffval.v V=mVRT
msubffval.r R=mRExT
msubffval.s S=mSubstT
msubffval.e E=mExT
msubffval.o O=mRSubstT
Assertion msubfval F:ARAVSF=eE1steOF2nde

Proof

Step Hyp Ref Expression
1 msubffval.v V=mVRT
2 msubffval.r R=mRExT
3 msubffval.s S=mSubstT
4 msubffval.e E=mExT
5 msubffval.o O=mRSubstT
6 1 2 3 4 5 msubffval TVS=fR𝑝𝑚VeE1steOf2nde
7 6 adantr TVF:ARAVS=fR𝑝𝑚VeE1steOf2nde
8 simplr TVF:ARAVf=FeEf=F
9 8 fveq2d TVF:ARAVf=FeEOf=OF
10 9 fveq1d TVF:ARAVf=FeEOf2nde=OF2nde
11 10 opeq2d TVF:ARAVf=FeE1steOf2nde=1steOF2nde
12 11 mpteq2dva TVF:ARAVf=FeE1steOf2nde=eE1steOF2nde
13 2 fvexi RV
14 1 fvexi VV
15 13 14 pm3.2i RVVV
16 15 a1i TVRVVV
17 elpm2r RVVVF:ARAVFR𝑝𝑚V
18 16 17 sylan TVF:ARAVFR𝑝𝑚V
19 4 fvexi EV
20 19 mptex eE1steOF2ndeV
21 20 a1i TVF:ARAVeE1steOF2ndeV
22 7 12 18 21 fvmptd TVF:ARAVSF=eE1steOF2nde
23 22 ex TVF:ARAVSF=eE1steOF2nde
24 0fv F=
25 mpt0 e1steOF2nde=
26 24 25 eqtr4i F=e1steOF2nde
27 fvprc ¬TVmSubstT=
28 3 27 eqtrid ¬TVS=
29 28 fveq1d ¬TVSF=F
30 fvprc ¬TVmExT=
31 4 30 eqtrid ¬TVE=
32 31 mpteq1d ¬TVeE1steOF2nde=e1steOF2nde
33 26 29 32 3eqtr4a ¬TVSF=eE1steOF2nde
34 33 a1d ¬TVF:ARAVSF=eE1steOF2nde
35 23 34 pm2.61i F:ARAVSF=eE1steOF2nde