Metamath Proof Explorer


Theorem mtyf

Description: The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mtyf.v V=mVRT
mtyf.f F=mVTT
mtyf.y Y=mTypeT
Assertion mtyf TmFSY:VF

Proof

Step Hyp Ref Expression
1 mtyf.v V=mVRT
2 mtyf.f F=mVTT
3 mtyf.y Y=mTypeT
4 eqid mTCT=mTCT
5 1 4 3 mtyf2 TmFSY:VmTCT
6 ffn Y:VmTCTYFnV
7 dffn4 YFnVY:VontoranY
8 6 7 sylib Y:VmTCTY:VontoranY
9 fof Y:VontoranYY:VranY
10 5 8 9 3syl TmFSY:VranY
11 2 3 mvtval F=ranY
12 feq3 F=ranYY:VFY:VranY
13 11 12 ax-mp Y:VFY:VranY
14 10 13 sylibr TmFSY:VF