Metamath Proof Explorer


Theorem mulmod0

Description: The product of an integer and a positive real number is 0 modulo the positive real number. (Contributed by Alexander van der Vekens, 17-May-2018) (Revised by AV, 5-Jul-2020)

Ref Expression
Assertion mulmod0 AM+A MmodM=0

Proof

Step Hyp Ref Expression
1 zcn AA
2 1 adantr AM+A
3 rpcn M+M
4 3 adantl AM+M
5 rpne0 M+M0
6 5 adantl AM+M0
7 2 4 6 divcan4d AM+A MM=A
8 simpl AM+A
9 7 8 eqeltrd AM+A MM
10 zre AA
11 rpre M+M
12 remulcl AMA M
13 10 11 12 syl2an AM+A M
14 mod0 A MM+A MmodM=0A MM
15 13 14 sylancom AM+A MmodM=0A MM
16 9 15 mpbird AM+A MmodM=0