Metamath Proof Explorer


Theorem mvhfval

Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvhfval.v V=mVRT
mvhfval.y Y=mTypeT
mvhfval.h H=mVHT
Assertion mvhfval H=vVYv⟨“v”⟩

Proof

Step Hyp Ref Expression
1 mvhfval.v V=mVRT
2 mvhfval.y Y=mTypeT
3 mvhfval.h H=mVHT
4 fveq2 t=TmVRt=mVRT
5 4 1 eqtr4di t=TmVRt=V
6 fveq2 t=TmTypet=mTypeT
7 6 2 eqtr4di t=TmTypet=Y
8 7 fveq1d t=TmTypetv=Yv
9 8 opeq1d t=TmTypetv⟨“v”⟩=Yv⟨“v”⟩
10 5 9 mpteq12dv t=TvmVRtmTypetv⟨“v”⟩=vVYv⟨“v”⟩
11 df-mvh mVH=tVvmVRtmTypetv⟨“v”⟩
12 10 11 1 mptfvmpt TVmVHT=vVYv⟨“v”⟩
13 mpt0 vYv⟨“v”⟩=
14 13 eqcomi =vYv⟨“v”⟩
15 fvprc ¬TVmVHT=
16 fvprc ¬TVmVRT=
17 1 16 eqtrid ¬TVV=
18 17 mpteq1d ¬TVvVYv⟨“v”⟩=vYv⟨“v”⟩
19 14 15 18 3eqtr4a ¬TVmVHT=vVYv⟨“v”⟩
20 12 19 pm2.61i mVHT=vVYv⟨“v”⟩
21 3 20 eqtri H=vVYv⟨“v”⟩