Metamath Proof Explorer


Theorem mvrfval

Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses mvrfval.v V = I mVar R
mvrfval.d D = h 0 I | h -1 Fin
mvrfval.z 0 ˙ = 0 R
mvrfval.o 1 ˙ = 1 R
mvrfval.i φ I W
mvrfval.r φ R Y
Assertion mvrfval φ V = x I f D if f = y I if y = x 1 0 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 mvrfval.v V = I mVar R
2 mvrfval.d D = h 0 I | h -1 Fin
3 mvrfval.z 0 ˙ = 0 R
4 mvrfval.o 1 ˙ = 1 R
5 mvrfval.i φ I W
6 mvrfval.r φ R Y
7 5 elexd φ I V
8 6 elexd φ R V
9 5 mptexd φ x I f D if f = y I if y = x 1 0 1 ˙ 0 ˙ V
10 simpl i = I r = R i = I
11 10 oveq2d i = I r = R 0 i = 0 I
12 11 rabeqdv i = I r = R h 0 i | h -1 Fin = h 0 I | h -1 Fin
13 12 2 eqtr4di i = I r = R h 0 i | h -1 Fin = D
14 mpteq1 i = I y i if y = x 1 0 = y I if y = x 1 0
15 14 adantr i = I r = R y i if y = x 1 0 = y I if y = x 1 0
16 15 eqeq2d i = I r = R f = y i if y = x 1 0 f = y I if y = x 1 0
17 simpr i = I r = R r = R
18 17 fveq2d i = I r = R 1 r = 1 R
19 18 4 eqtr4di i = I r = R 1 r = 1 ˙
20 17 fveq2d i = I r = R 0 r = 0 R
21 20 3 eqtr4di i = I r = R 0 r = 0 ˙
22 16 19 21 ifbieq12d i = I r = R if f = y i if y = x 1 0 1 r 0 r = if f = y I if y = x 1 0 1 ˙ 0 ˙
23 13 22 mpteq12dv i = I r = R f h 0 i | h -1 Fin if f = y i if y = x 1 0 1 r 0 r = f D if f = y I if y = x 1 0 1 ˙ 0 ˙
24 10 23 mpteq12dv i = I r = R x i f h 0 i | h -1 Fin if f = y i if y = x 1 0 1 r 0 r = x I f D if f = y I if y = x 1 0 1 ˙ 0 ˙
25 df-mvr mVar = i V , r V x i f h 0 i | h -1 Fin if f = y i if y = x 1 0 1 r 0 r
26 24 25 ovmpoga I V R V x I f D if f = y I if y = x 1 0 1 ˙ 0 ˙ V I mVar R = x I f D if f = y I if y = x 1 0 1 ˙ 0 ˙
27 7 8 9 26 syl3anc φ I mVar R = x I f D if f = y I if y = x 1 0 1 ˙ 0 ˙
28 1 27 syl5eq φ V = x I f D if f = y I if y = x 1 0 1 ˙ 0 ˙