Metamath Proof Explorer


Theorem mvrfval

Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses mvrfval.v V=ImVarR
mvrfval.d D=h0I|h-1Fin
mvrfval.z 0˙=0R
mvrfval.o 1˙=1R
mvrfval.i φIW
mvrfval.r φRY
Assertion mvrfval φV=xIfDiff=yIify=x101˙0˙

Proof

Step Hyp Ref Expression
1 mvrfval.v V=ImVarR
2 mvrfval.d D=h0I|h-1Fin
3 mvrfval.z 0˙=0R
4 mvrfval.o 1˙=1R
5 mvrfval.i φIW
6 mvrfval.r φRY
7 5 elexd φIV
8 6 elexd φRV
9 5 mptexd φxIfDiff=yIify=x101˙0˙V
10 simpl i=Ir=Ri=I
11 10 oveq2d i=Ir=R0i=0I
12 11 rabeqdv i=Ir=Rh0i|h-1Fin=h0I|h-1Fin
13 12 2 eqtr4di i=Ir=Rh0i|h-1Fin=D
14 mpteq1 i=Iyiify=x10=yIify=x10
15 14 adantr i=Ir=Ryiify=x10=yIify=x10
16 15 eqeq2d i=Ir=Rf=yiify=x10f=yIify=x10
17 simpr i=Ir=Rr=R
18 17 fveq2d i=Ir=R1r=1R
19 18 4 eqtr4di i=Ir=R1r=1˙
20 17 fveq2d i=Ir=R0r=0R
21 20 3 eqtr4di i=Ir=R0r=0˙
22 16 19 21 ifbieq12d i=Ir=Riff=yiify=x101r0r=iff=yIify=x101˙0˙
23 13 22 mpteq12dv i=Ir=Rfh0i|h-1Finiff=yiify=x101r0r=fDiff=yIify=x101˙0˙
24 10 23 mpteq12dv i=Ir=Rxifh0i|h-1Finiff=yiify=x101r0r=xIfDiff=yIify=x101˙0˙
25 df-mvr mVar=iV,rVxifh0i|h-1Finiff=yiify=x101r0r
26 24 25 ovmpoga IVRVxIfDiff=yIify=x101˙0˙VImVarR=xIfDiff=yIify=x101˙0˙
27 7 8 9 26 syl3anc φImVarR=xIfDiff=yIify=x101˙0˙
28 1 27 eqtrid φV=xIfDiff=yIify=x101˙0˙