Metamath Proof Explorer


Theorem mvrsfpw

Description: The set of variables in an expression is a finite subset of V . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvrsval.v V = mVR T
mvrsval.e E = mEx T
mvrsval.w W = mVars T
Assertion mvrsfpw X E W X 𝒫 V Fin

Proof

Step Hyp Ref Expression
1 mvrsval.v V = mVR T
2 mvrsval.e E = mEx T
3 mvrsval.w W = mVars T
4 1 2 3 mvrsval X E W X = ran 2 nd X V
5 inss2 ran 2 nd X V V
6 5 a1i X E ran 2 nd X V V
7 fzofi 0 ..^ 2 nd X Fin
8 xp2nd X mTC T × Word mCN T V 2 nd X Word mCN T V
9 eqid mTC T = mTC T
10 eqid mCN T = mCN T
11 9 2 10 1 mexval2 E = mTC T × Word mCN T V
12 8 11 eleq2s X E 2 nd X Word mCN T V
13 wrdf 2 nd X Word mCN T V 2 nd X : 0 ..^ 2 nd X mCN T V
14 ffn 2 nd X : 0 ..^ 2 nd X mCN T V 2 nd X Fn 0 ..^ 2 nd X
15 12 13 14 3syl X E 2 nd X Fn 0 ..^ 2 nd X
16 dffn4 2 nd X Fn 0 ..^ 2 nd X 2 nd X : 0 ..^ 2 nd X onto ran 2 nd X
17 15 16 sylib X E 2 nd X : 0 ..^ 2 nd X onto ran 2 nd X
18 fofi 0 ..^ 2 nd X Fin 2 nd X : 0 ..^ 2 nd X onto ran 2 nd X ran 2 nd X Fin
19 7 17 18 sylancr X E ran 2 nd X Fin
20 inss1 ran 2 nd X V ran 2 nd X
21 ssfi ran 2 nd X Fin ran 2 nd X V ran 2 nd X ran 2 nd X V Fin
22 19 20 21 sylancl X E ran 2 nd X V Fin
23 elfpw ran 2 nd X V 𝒫 V Fin ran 2 nd X V V ran 2 nd X V Fin
24 6 22 23 sylanbrc X E ran 2 nd X V 𝒫 V Fin
25 4 24 eqeltrd X E W X 𝒫 V Fin