Metamath Proof Explorer


Theorem mvrsfpw

Description: The set of variables in an expression is a finite subset of V . (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvrsval.v V=mVRT
mvrsval.e E=mExT
mvrsval.w W=mVarsT
Assertion mvrsfpw XEWX𝒫VFin

Proof

Step Hyp Ref Expression
1 mvrsval.v V=mVRT
2 mvrsval.e E=mExT
3 mvrsval.w W=mVarsT
4 1 2 3 mvrsval XEWX=ran2ndXV
5 inss2 ran2ndXVV
6 5 a1i XEran2ndXVV
7 fzofi 0..^2ndXFin
8 xp2nd XmTCT×WordmCNTV2ndXWordmCNTV
9 eqid mTCT=mTCT
10 eqid mCNT=mCNT
11 9 2 10 1 mexval2 E=mTCT×WordmCNTV
12 8 11 eleq2s XE2ndXWordmCNTV
13 wrdf 2ndXWordmCNTV2ndX:0..^2ndXmCNTV
14 ffn 2ndX:0..^2ndXmCNTV2ndXFn0..^2ndX
15 12 13 14 3syl XE2ndXFn0..^2ndX
16 dffn4 2ndXFn0..^2ndX2ndX:0..^2ndXontoran2ndX
17 15 16 sylib XE2ndX:0..^2ndXontoran2ndX
18 fofi 0..^2ndXFin2ndX:0..^2ndXontoran2ndXran2ndXFin
19 7 17 18 sylancr XEran2ndXFin
20 inss1 ran2ndXVran2ndX
21 ssfi ran2ndXFinran2ndXVran2ndXran2ndXVFin
22 19 20 21 sylancl XEran2ndXVFin
23 elfpw ran2ndXV𝒫VFinran2ndXVVran2ndXVFin
24 6 22 23 sylanbrc XEran2ndXV𝒫VFin
25 4 24 eqeltrd XEWX𝒫VFin