Metamath Proof Explorer


Theorem mvrsval

Description: The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mvrsval.v V=mVRT
mvrsval.e E=mExT
mvrsval.w W=mVarsT
Assertion mvrsval XEWX=ran2ndXV

Proof

Step Hyp Ref Expression
1 mvrsval.v V=mVRT
2 mvrsval.e E=mExT
3 mvrsval.w W=mVarsT
4 elfvex XmExTTV
5 4 2 eleq2s XETV
6 fveq2 t=TmExt=mExT
7 6 2 eqtr4di t=TmExt=E
8 fveq2 t=TmVRt=mVRT
9 8 1 eqtr4di t=TmVRt=V
10 9 ineq2d t=Tran2ndemVRt=ran2ndeV
11 7 10 mpteq12dv t=TemExtran2ndemVRt=eEran2ndeV
12 df-mvrs mVars=tVemExtran2ndemVRt
13 11 12 2 mptfvmpt TVmVarsT=eEran2ndeV
14 5 13 syl XEmVarsT=eEran2ndeV
15 3 14 eqtrid XEW=eEran2ndeV
16 fveq2 e=X2nde=2ndX
17 16 rneqd e=Xran2nde=ran2ndX
18 17 ineq1d e=Xran2ndeV=ran2ndXV
19 18 adantl XEe=Xran2ndeV=ran2ndXV
20 id XEXE
21 fvex 2ndXV
22 21 rnex ran2ndXV
23 22 inex1 ran2ndXVV
24 23 a1i XEran2ndXVV
25 15 19 20 24 fvmptd XEWX=ran2ndXV