Metamath Proof Explorer


Theorem naddwordnexlem0

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, ( _om .o suc C ) lies between A and B . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a φA=ω𝑜C+𝑜M
naddwordnex.b φB=ω𝑜D+𝑜N
naddwordnex.c φCD
naddwordnex.d φDOn
naddwordnex.m φMω
naddwordnex.n φNM
Assertion naddwordnexlem0 φAω𝑜sucCω𝑜sucCB

Proof

Step Hyp Ref Expression
1 naddwordnex.a φA=ω𝑜C+𝑜M
2 naddwordnex.b φB=ω𝑜D+𝑜N
3 naddwordnex.c φCD
4 naddwordnex.d φDOn
5 naddwordnex.m φMω
6 naddwordnex.n φNM
7 omelon ωOn
8 7 a1i φωOn
9 onelon DOnCDCOn
10 4 3 9 syl2anc φCOn
11 omcl ωOnCOnω𝑜COn
12 8 10 11 syl2anc φω𝑜COn
13 8 12 jca φωOnω𝑜COn
14 oaordi ωOnω𝑜COnMωω𝑜C+𝑜Mω𝑜C+𝑜ω
15 13 5 14 sylc φω𝑜C+𝑜Mω𝑜C+𝑜ω
16 omsuc ωOnCOnω𝑜sucC=ω𝑜C+𝑜ω
17 8 10 16 syl2anc φω𝑜sucC=ω𝑜C+𝑜ω
18 15 1 17 3eltr4d φAω𝑜sucC
19 onsuc COnsucCOn
20 10 19 syl φsucCOn
21 20 4 8 3jca φsucCOnDOnωOn
22 onsucss DOnCDsucCD
23 4 3 22 sylc φsucCD
24 omwordi sucCOnDOnωOnsucCDω𝑜sucCω𝑜D
25 21 23 24 sylc φω𝑜sucCω𝑜D
26 omcl ωOnDOnω𝑜DOn
27 8 4 26 syl2anc φω𝑜DOn
28 6 5 jca φNMMω
29 ontr1 ωOnNMMωNω
30 8 28 29 sylc φNω
31 nnon NωNOn
32 30 31 syl φNOn
33 oaword1 ω𝑜DOnNOnω𝑜Dω𝑜D+𝑜N
34 27 32 33 syl2anc φω𝑜Dω𝑜D+𝑜N
35 25 34 sstrd φω𝑜sucCω𝑜D+𝑜N
36 35 2 sseqtrrd φω𝑜sucCB
37 18 36 jca φAω𝑜sucCω𝑜sucCB