Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, ( _om .o suc C ) lies between A and B . (Contributed by RP, 14-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | naddwordnex.a | |
|
naddwordnex.b | |
||
naddwordnex.c | |
||
naddwordnex.d | |
||
naddwordnex.m | |
||
naddwordnex.n | |
||
Assertion | naddwordnexlem0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | naddwordnex.a | |
|
2 | naddwordnex.b | |
|
3 | naddwordnex.c | |
|
4 | naddwordnex.d | |
|
5 | naddwordnex.m | |
|
6 | naddwordnex.n | |
|
7 | omelon | |
|
8 | 7 | a1i | |
9 | onelon | |
|
10 | 4 3 9 | syl2anc | |
11 | omcl | |
|
12 | 8 10 11 | syl2anc | |
13 | 8 12 | jca | |
14 | oaordi | |
|
15 | 13 5 14 | sylc | |
16 | omsuc | |
|
17 | 8 10 16 | syl2anc | |
18 | 15 1 17 | 3eltr4d | |
19 | onsuc | |
|
20 | 10 19 | syl | |
21 | 20 4 8 | 3jca | |
22 | onsucss | |
|
23 | 4 3 22 | sylc | |
24 | omwordi | |
|
25 | 21 23 24 | sylc | |
26 | omcl | |
|
27 | 8 4 26 | syl2anc | |
28 | 6 5 | jca | |
29 | ontr1 | |
|
30 | 8 28 29 | sylc | |
31 | nnon | |
|
32 | 30 31 | syl | |
33 | oaword1 | |
|
34 | 27 32 33 | syl2anc | |
35 | 25 34 | sstrd | |
36 | 35 2 | sseqtrrd | |
37 | 18 36 | jca | |