Metamath Proof Explorer


Theorem naddwordnexlem1

Description: When A is the sum of a limit ordinal (or zero) and a natural number and B is the sum of a larger limit ordinal and a smaller natural number, B is equal to or larger than A . (Contributed by RP, 14-Feb-2025)

Ref Expression
Hypotheses naddwordnex.a φA=ω𝑜C+𝑜M
naddwordnex.b φB=ω𝑜D+𝑜N
naddwordnex.c φCD
naddwordnex.d φDOn
naddwordnex.m φMω
naddwordnex.n φNM
Assertion naddwordnexlem1 φAB

Proof

Step Hyp Ref Expression
1 naddwordnex.a φA=ω𝑜C+𝑜M
2 naddwordnex.b φB=ω𝑜D+𝑜N
3 naddwordnex.c φCD
4 naddwordnex.d φDOn
5 naddwordnex.m φMω
6 naddwordnex.n φNM
7 1 2 3 4 5 6 naddwordnexlem0 φAω𝑜sucCω𝑜sucCB
8 omelon ωOn
9 onelon DOnCDCOn
10 4 3 9 syl2anc φCOn
11 onsuc COnsucCOn
12 10 11 syl φsucCOn
13 omcl ωOnsucCOnω𝑜sucCOn
14 8 12 13 sylancr φω𝑜sucCOn
15 onelss ω𝑜sucCOnAω𝑜sucCAω𝑜sucC
16 14 15 syl φAω𝑜sucCAω𝑜sucC
17 16 adantrd φAω𝑜sucCω𝑜sucCBAω𝑜sucC
18 17 imp φAω𝑜sucCω𝑜sucCBAω𝑜sucC
19 simprr φAω𝑜sucCω𝑜sucCBω𝑜sucCB
20 18 19 sstrd φAω𝑜sucCω𝑜sucCBAB
21 7 20 mpdan φAB