Metamath Proof Explorer


Theorem nbuhgr

Description: The set of neighbors of a vertex in a hypergraph. This version of nbgrval (with N being an arbitrary set instead of being a vertex) only holds for classes whose edges are subsets of the set of vertices (hypergraphs!). (Contributed by AV, 26-Oct-2020) (Proof shortened by AV, 15-Nov-2020)

Ref Expression
Hypotheses nbuhgr.v V = Vtx G
nbuhgr.e E = Edg G
Assertion nbuhgr G UHGraph N X G NeighbVtx N = n V N | e E N n e

Proof

Step Hyp Ref Expression
1 nbuhgr.v V = Vtx G
2 nbuhgr.e E = Edg G
3 1 2 nbgrval N V G NeighbVtx N = n V N | e E N n e
4 3 a1d N V G UHGraph N X G NeighbVtx N = n V N | e E N n e
5 df-nel N V ¬ N V
6 1 nbgrnvtx0 N V G NeighbVtx N =
7 5 6 sylbir ¬ N V G NeighbVtx N =
8 7 adantr ¬ N V G UHGraph N X G NeighbVtx N =
9 simpl G UHGraph N X G UHGraph
10 9 adantr G UHGraph N X n V N G UHGraph
11 2 eleq2i e E e Edg G
12 11 biimpi e E e Edg G
13 edguhgr G UHGraph e Edg G e 𝒫 Vtx G
14 10 12 13 syl2an G UHGraph N X n V N e E e 𝒫 Vtx G
15 velpw e 𝒫 Vtx G e Vtx G
16 1 eqcomi Vtx G = V
17 16 sseq2i e Vtx G e V
18 15 17 bitri e 𝒫 Vtx G e V
19 sstr N n e e V N n V
20 prssg N X n V N V n V N n V
21 20 bicomd N X n V N n V N V n V
22 21 elvd N X N n V N V n V
23 simpl N V n V N V
24 22 23 syl6bi N X N n V N V
25 19 24 syl5com N n e e V N X N V
26 25 ex N n e e V N X N V
27 26 com13 N X e V N n e N V
28 27 ad3antlr G UHGraph N X n V N e E e V N n e N V
29 18 28 syl5bi G UHGraph N X n V N e E e 𝒫 Vtx G N n e N V
30 14 29 mpd G UHGraph N X n V N e E N n e N V
31 30 rexlimdva G UHGraph N X n V N e E N n e N V
32 31 con3rr3 ¬ N V G UHGraph N X n V N ¬ e E N n e
33 32 expdimp ¬ N V G UHGraph N X n V N ¬ e E N n e
34 33 ralrimiv ¬ N V G UHGraph N X n V N ¬ e E N n e
35 rabeq0 n V N | e E N n e = n V N ¬ e E N n e
36 34 35 sylibr ¬ N V G UHGraph N X n V N | e E N n e =
37 8 36 eqtr4d ¬ N V G UHGraph N X G NeighbVtx N = n V N | e E N n e
38 37 ex ¬ N V G UHGraph N X G NeighbVtx N = n V N | e E N n e
39 4 38 pm2.61i G UHGraph N X G NeighbVtx N = n V N | e E N n e