Metamath Proof Explorer


Theorem nbuhgr

Description: The set of neighbors of a vertex in a hypergraph. This version of nbgrval (with N being an arbitrary set instead of being a vertex) only holds for classes whose edges are subsets of the set of vertices (hypergraphs!). (Contributed by AV, 26-Oct-2020) (Proof shortened by AV, 15-Nov-2020)

Ref Expression
Hypotheses nbuhgr.v V=VtxG
nbuhgr.e E=EdgG
Assertion nbuhgr GUHGraphNXGNeighbVtxN=nVN|eENne

Proof

Step Hyp Ref Expression
1 nbuhgr.v V=VtxG
2 nbuhgr.e E=EdgG
3 1 2 nbgrval NVGNeighbVtxN=nVN|eENne
4 3 a1d NVGUHGraphNXGNeighbVtxN=nVN|eENne
5 df-nel NV¬NV
6 1 nbgrnvtx0 NVGNeighbVtxN=
7 5 6 sylbir ¬NVGNeighbVtxN=
8 7 adantr ¬NVGUHGraphNXGNeighbVtxN=
9 simpl GUHGraphNXGUHGraph
10 9 adantr GUHGraphNXnVNGUHGraph
11 2 eleq2i eEeEdgG
12 11 biimpi eEeEdgG
13 edguhgr GUHGrapheEdgGe𝒫VtxG
14 10 12 13 syl2an GUHGraphNXnVNeEe𝒫VtxG
15 velpw e𝒫VtxGeVtxG
16 1 eqcomi VtxG=V
17 16 sseq2i eVtxGeV
18 15 17 bitri e𝒫VtxGeV
19 sstr NneeVNnV
20 prssg NXnVNVnVNnV
21 20 bicomd NXnVNnVNVnV
22 21 elvd NXNnVNVnV
23 simpl NVnVNV
24 22 23 syl6bi NXNnVNV
25 19 24 syl5com NneeVNXNV
26 25 ex NneeVNXNV
27 26 com13 NXeVNneNV
28 27 ad3antlr GUHGraphNXnVNeEeVNneNV
29 18 28 biimtrid GUHGraphNXnVNeEe𝒫VtxGNneNV
30 14 29 mpd GUHGraphNXnVNeENneNV
31 30 rexlimdva GUHGraphNXnVNeENneNV
32 31 con3rr3 ¬NVGUHGraphNXnVN¬eENne
33 32 expdimp ¬NVGUHGraphNXnVN¬eENne
34 33 ralrimiv ¬NVGUHGraphNXnVN¬eENne
35 rabeq0 nVN|eENne=nVN¬eENne
36 34 35 sylibr ¬NVGUHGraphNXnVN|eENne=
37 8 36 eqtr4d ¬NVGUHGraphNXGNeighbVtxN=nVN|eENne
38 37 ex ¬NVGUHGraphNXGNeighbVtxN=nVN|eENne
39 4 38 pm2.61i GUHGraphNXGNeighbVtxN=nVN|eENne