Description: The set of neighbors of a vertex in a hypergraph. This version of nbgrval (with N being an arbitrary set instead of being a vertex) only holds for classes whose edges are subsets of the set of vertices (hypergraphs!). (Contributed by AV, 26-Oct-2020) (Proof shortened by AV, 15-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nbuhgr.v | |
|
nbuhgr.e | |
||
Assertion | nbuhgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbuhgr.v | |
|
2 | nbuhgr.e | |
|
3 | 1 2 | nbgrval | |
4 | 3 | a1d | |
5 | df-nel | |
|
6 | 1 | nbgrnvtx0 | |
7 | 5 6 | sylbir | |
8 | 7 | adantr | |
9 | simpl | |
|
10 | 9 | adantr | |
11 | 2 | eleq2i | |
12 | 11 | biimpi | |
13 | edguhgr | |
|
14 | 10 12 13 | syl2an | |
15 | velpw | |
|
16 | 1 | eqcomi | |
17 | 16 | sseq2i | |
18 | 15 17 | bitri | |
19 | sstr | |
|
20 | prssg | |
|
21 | 20 | bicomd | |
22 | 21 | elvd | |
23 | simpl | |
|
24 | 22 23 | syl6bi | |
25 | 19 24 | syl5com | |
26 | 25 | ex | |
27 | 26 | com13 | |
28 | 27 | ad3antlr | |
29 | 18 28 | biimtrid | |
30 | 14 29 | mpd | |
31 | 30 | rexlimdva | |
32 | 31 | con3rr3 | |
33 | 32 | expdimp | |
34 | 33 | ralrimiv | |
35 | rabeq0 | |
|
36 | 34 35 | sylibr | |
37 | 8 36 | eqtr4d | |
38 | 37 | ex | |
39 | 4 38 | pm2.61i | |