| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nbgr2vtx1edg.v |  | 
						
							| 2 |  | nbgr2vtx1edg.e |  | 
						
							| 3 | 1 2 | nbgrel |  | 
						
							| 4 | 2 | eleq2i |  | 
						
							| 5 |  | edguhgr |  | 
						
							| 6 | 4 5 | sylan2b |  | 
						
							| 7 | 1 | eqeq1i |  | 
						
							| 8 |  | pweq |  | 
						
							| 9 | 8 | eleq2d |  | 
						
							| 10 |  | velpw |  | 
						
							| 11 | 9 10 | bitrdi |  | 
						
							| 12 | 7 11 | sylbi |  | 
						
							| 13 | 12 | adantl |  | 
						
							| 14 |  | prcom |  | 
						
							| 15 | 14 | sseq1i |  | 
						
							| 16 |  | eqss |  | 
						
							| 17 |  | eleq1a |  | 
						
							| 18 | 17 | a1i |  | 
						
							| 19 | 18 | com13 |  | 
						
							| 20 | 16 19 | sylbir |  | 
						
							| 21 | 20 | ex |  | 
						
							| 22 | 15 21 | sylbi |  | 
						
							| 23 | 22 | com13 |  | 
						
							| 24 | 23 | ad2antlr |  | 
						
							| 25 | 13 24 | sylbid |  | 
						
							| 26 | 25 | ex |  | 
						
							| 27 | 6 26 | mpid |  | 
						
							| 28 | 27 | impancom |  | 
						
							| 29 | 28 | com14 |  | 
						
							| 30 | 29 | rexlimdv |  | 
						
							| 31 | 30 | 3impia |  | 
						
							| 32 | 31 | com12 |  | 
						
							| 33 | 3 32 | biimtrid |  | 
						
							| 34 | 33 | 3impia |  |