Metamath Proof Explorer


Theorem nbupgrel

Description: A neighbor of a vertex in a pseudograph. (Contributed by AV, 5-Nov-2020)

Ref Expression
Hypotheses nbuhgr.v V=VtxG
nbuhgr.e E=EdgG
Assertion nbupgrel GUPGraphKVNVNKNGNeighbVtxKNKE

Proof

Step Hyp Ref Expression
1 nbuhgr.v V=VtxG
2 nbuhgr.e E=EdgG
3 1 2 nbupgr GUPGraphKVGNeighbVtxK=nVK|KnE
4 3 eleq2d GUPGraphKVNGNeighbVtxKNnVK|KnE
5 preq2 n=NKn=KN
6 5 eleq1d n=NKnEKNE
7 6 elrab NnVK|KnENVKKNE
8 4 7 bitrdi GUPGraphKVNGNeighbVtxKNVKKNE
9 8 adantr GUPGraphKVNVNKNGNeighbVtxKNVKKNE
10 eldifsn NVKNVNK
11 10 biimpri NVNKNVK
12 11 adantl GUPGraphKVNVNKNVK
13 12 biantrurd GUPGraphKVNVNKKNENVKKNE
14 prcom KN=NK
15 14 eleq1i KNENKE
16 15 a1i GUPGraphKVNVNKKNENKE
17 9 13 16 3bitr2d GUPGraphKVNVNKNGNeighbVtxKNKE