Metamath Proof Explorer


Theorem ncvsdif

Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006) (Revised by AV, 8-Oct-2021)

Ref Expression
Hypotheses ncvsprp.v V = Base W
ncvsprp.n N = norm W
ncvsprp.s · ˙ = W
ncvsdif.p + ˙ = + W
Assertion ncvsdif W NrmVec ℂVec A V B V N A + ˙ -1 · ˙ B = N B + ˙ -1 · ˙ A

Proof

Step Hyp Ref Expression
1 ncvsprp.v V = Base W
2 ncvsprp.n N = norm W
3 ncvsprp.s · ˙ = W
4 ncvsdif.p + ˙ = + W
5 elin W NrmVec ℂVec W NrmVec W ℂVec
6 id W ℂVec W ℂVec
7 6 cvsclm W ℂVec W CMod
8 5 7 simplbiim W NrmVec ℂVec W CMod
9 eqid - W = - W
10 eqid Scalar W = Scalar W
11 1 4 9 10 3 clmvsubval W CMod A V B V A - W B = A + ˙ -1 · ˙ B
12 11 eqcomd W CMod A V B V A + ˙ -1 · ˙ B = A - W B
13 8 12 syl3an1 W NrmVec ℂVec A V B V A + ˙ -1 · ˙ B = A - W B
14 13 fveq2d W NrmVec ℂVec A V B V N A + ˙ -1 · ˙ B = N A - W B
15 nvcnlm W NrmVec W NrmMod
16 nlmngp W NrmMod W NrmGrp
17 15 16 syl W NrmVec W NrmGrp
18 17 adantr W NrmVec W ℂVec W NrmGrp
19 5 18 sylbi W NrmVec ℂVec W NrmGrp
20 1 2 9 nmsub W NrmGrp A V B V N A - W B = N B - W A
21 19 20 syl3an1 W NrmVec ℂVec A V B V N A - W B = N B - W A
22 8 3ad2ant1 W NrmVec ℂVec A V B V W CMod
23 simp3 W NrmVec ℂVec A V B V B V
24 simp2 W NrmVec ℂVec A V B V A V
25 1 4 9 10 3 clmvsubval W CMod B V A V B - W A = B + ˙ -1 · ˙ A
26 22 23 24 25 syl3anc W NrmVec ℂVec A V B V B - W A = B + ˙ -1 · ˙ A
27 26 fveq2d W NrmVec ℂVec A V B V N B - W A = N B + ˙ -1 · ˙ A
28 14 21 27 3eqtrd W NrmVec ℂVec A V B V N A + ˙ -1 · ˙ B = N B + ˙ -1 · ˙ A