Metamath Proof Explorer


Theorem negcon1

Description: Negative contraposition law. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion negcon1 ABA=BB=A

Proof

Step Hyp Ref Expression
1 negcl AA
2 neg11 ABA=BA=B
3 1 2 sylan ABA=BA=B
4 negneg AA=A
5 4 adantr ABA=A
6 5 eqeq1d ABA=BA=B
7 3 6 bitr3d ABA=BA=B
8 eqcom A=BB=A
9 7 8 bitrdi ABA=BB=A