Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Arithmetic theorems
negn0nposznnd
Next ⟩
sqmid3api
Metamath Proof Explorer
Ascii
Unicode
Theorem
negn0nposznnd
Description:
Lemma for
dffltz
.
(Contributed by
Steven Nguyen
, 27-Feb-2023)
Ref
Expression
Hypotheses
negn0nposznnd.1
⊢
φ
→
A
≠
0
negn0nposznnd.2
⊢
φ
→
¬
0
<
A
negn0nposznnd.3
⊢
φ
→
A
∈
ℤ
Assertion
negn0nposznnd
⊢
φ
→
−
A
∈
ℕ
Proof
Step
Hyp
Ref
Expression
1
negn0nposznnd.1
⊢
φ
→
A
≠
0
2
negn0nposznnd.2
⊢
φ
→
¬
0
<
A
3
negn0nposznnd.3
⊢
φ
→
A
∈
ℤ
4
nngt0
⊢
A
∈
ℕ
→
0
<
A
5
2
4
nsyl
⊢
φ
→
¬
A
∈
ℕ
6
1
neneqd
⊢
φ
→
¬
A
=
0
7
5
6
jca
⊢
φ
→
¬
A
∈
ℕ
∧
¬
A
=
0
8
pm4.56
⊢
¬
A
∈
ℕ
∧
¬
A
=
0
↔
¬
A
∈
ℕ
∨
A
=
0
9
7
8
sylib
⊢
φ
→
¬
A
∈
ℕ
∨
A
=
0
10
elnn0
⊢
A
∈
ℕ
0
↔
A
∈
ℕ
∨
A
=
0
11
9
10
sylnibr
⊢
φ
→
¬
A
∈
ℕ
0
12
znnn0nn
⊢
A
∈
ℤ
∧
¬
A
∈
ℕ
0
→
−
A
∈
ℕ
13
3
11
12
syl2anc
⊢
φ
→
−
A
∈
ℕ