Metamath Proof Explorer


Theorem neicvgel2

Description: The complement of a subset being an element of a neighborhood at a point is equivalent to that subset not being a element of the convergent at that point. (Contributed by RP, 12-Jun-2021)

Ref Expression
Hypotheses neicvg.o O = i V , j V k 𝒫 j i l j m i | l k m
neicvg.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
neicvg.d D = P B
neicvg.f F = 𝒫 B O B
neicvg.g G = B O 𝒫 B
neicvg.h H = F D G
neicvg.r φ N H M
neicvgel.x φ X B
neicvgel.s φ S 𝒫 B
Assertion neicvgel2 φ B S N X ¬ S M X

Proof

Step Hyp Ref Expression
1 neicvg.o O = i V , j V k 𝒫 j i l j m i | l k m
2 neicvg.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
3 neicvg.d D = P B
4 neicvg.f F = 𝒫 B O B
5 neicvg.g G = B O 𝒫 B
6 neicvg.h H = F D G
7 neicvg.r φ N H M
8 neicvgel.x φ X B
9 neicvgel.s φ S 𝒫 B
10 3 6 7 neicvgrcomplex φ B S 𝒫 B
11 1 2 3 4 5 6 7 8 10 neicvgel1 φ B S N X ¬ B B S M X
12 9 elpwid φ S B
13 dfss4 S B B B S = S
14 12 13 sylib φ B B S = S
15 14 eleq1d φ B B S M X S M X
16 15 notbid φ ¬ B B S M X ¬ S M X
17 11 16 bitrd φ B S N X ¬ S M X