Metamath Proof Explorer


Theorem nf1const

Description: A constant function from at least two elements is not one-to-one. (Contributed by AV, 30-Mar-2024)

Ref Expression
Assertion nf1const F:ABXAYAXY¬F:A1-1C

Proof

Step Hyp Ref Expression
1 simp1 XAYAXYXA
2 simp2 XAYAXYYA
3 fvconst F:ABXAFX=B
4 1 3 sylan2 F:ABXAYAXYFX=B
5 fvconst F:ABYAFY=B
6 2 5 sylan2 F:ABXAYAXYFY=B
7 4 6 eqtr4d F:ABXAYAXYFX=FY
8 neneq XY¬X=Y
9 8 3ad2ant3 XAYAXY¬X=Y
10 9 adantl F:ABXAYAXY¬X=Y
11 7 10 jcnd F:ABXAYAXY¬FX=FYX=Y
12 fveqeq2 x=XFx=FyFX=Fy
13 eqeq1 x=Xx=yX=y
14 12 13 imbi12d x=XFx=Fyx=yFX=FyX=y
15 14 notbid x=X¬Fx=Fyx=y¬FX=FyX=y
16 fveq2 y=YFy=FY
17 16 eqeq2d y=YFX=FyFX=FY
18 eqeq2 y=YX=yX=Y
19 17 18 imbi12d y=YFX=FyX=yFX=FYX=Y
20 19 notbid y=Y¬FX=FyX=y¬FX=FYX=Y
21 15 20 rspc2ev XAYA¬FX=FYX=YxAyA¬Fx=Fyx=y
22 1 2 11 21 syl2an23an F:ABXAYAXYxAyA¬Fx=Fyx=y
23 rexnal2 xAyA¬Fx=Fyx=y¬xAyAFx=Fyx=y
24 22 23 sylib F:ABXAYAXY¬xAyAFx=Fyx=y
25 24 olcd F:ABXAYAXY¬F:AC¬xAyAFx=Fyx=y
26 ianor ¬F:ACxAyAFx=Fyx=y¬F:AC¬xAyAFx=Fyx=y
27 dff13 F:A1-1CF:ACxAyAFx=Fyx=y
28 26 27 xchnxbir ¬F:A1-1C¬F:AC¬xAyAFx=Fyx=y
29 25 28 sylibr F:ABXAYAXY¬F:A1-1C