Metamath Proof Explorer


Theorem ngpds2r

Description: Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ngpds2.x X=BaseG
ngpds2.z 0˙=0G
ngpds2.m -˙=-G
ngpds2.d D=distG
Assertion ngpds2r GNrmGrpAXBXADB=B-˙AD0˙

Proof

Step Hyp Ref Expression
1 ngpds2.x X=BaseG
2 ngpds2.z 0˙=0G
3 ngpds2.m -˙=-G
4 ngpds2.d D=distG
5 ngpxms GNrmGrpG∞MetSp
6 1 4 xmssym G∞MetSpAXBXADB=BDA
7 5 6 syl3an1 GNrmGrpAXBXADB=BDA
8 1 2 3 4 ngpds2 GNrmGrpBXAXBDA=B-˙AD0˙
9 8 3com23 GNrmGrpAXBXBDA=B-˙AD0˙
10 7 9 eqtrd GNrmGrpAXBXADB=B-˙AD0˙