Metamath Proof Explorer


Theorem ngpdsr

Description: Value of the distance function in terms of the norm of a normed group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ngpds.n N=normG
ngpds.x X=BaseG
ngpds.m -˙=-G
ngpds.d D=distG
Assertion ngpdsr GNrmGrpAXBXADB=NB-˙A

Proof

Step Hyp Ref Expression
1 ngpds.n N=normG
2 ngpds.x X=BaseG
3 ngpds.m -˙=-G
4 ngpds.d D=distG
5 ngpxms GNrmGrpG∞MetSp
6 2 4 xmssym G∞MetSpAXBXADB=BDA
7 5 6 syl3an1 GNrmGrpAXBXADB=BDA
8 1 2 3 4 ngpds GNrmGrpBXAXBDA=NB-˙A
9 8 3com23 GNrmGrpAXBXBDA=NB-˙A
10 7 9 eqtrd GNrmGrpAXBXADB=NB-˙A